Citation: | LIANG Jiang-tao, ZHAO Zheng-zhi, LIU Kun, HAN Yun, PAN Hui, HUI Ya-jun, CAO Rong-hua, LU Hong-zhou, GUO Ai-min. Microstructure and properties of 1300-MPa grade Nb microalloying DH steel[J]. Chinese Journal of Engineering, 2021, 43(3): 392-399. doi: 10.13374/j.issn2095-9389.2020.01.13.002 |
[1] |
Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe–0.2C–8Mn–2Al medium Mn steel. Acta Mater, 2018, 147: 59
|
[2] |
Michiuchi M, Nambu S, Ishimoto Y, et al. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater, 2009, 57(18): 5283
|
[3] |
Sun J J, Jiang T, Wang Y J, et al. Effect of grain refinement on high-carbon martensite transformation and its mechanical properties. Mater Sci Eng A, 2018, 726: 342 doi: 10.1016/j.msea.2018.04.095
|
[4] |
Sarkar R, Chandra S K, De P S, et al. Evaluation of a ductile tearing resistance of dual-phase DP 780 grade automotive steel sheet from essential work of fracture (EWF) tests. Theor Appl Fract Mech, 2019, 103: 102278 doi: 10.1016/j.tafmec.2019.102278
|
[5] |
Zhao Z Z, Tong T T, Liang J H, et al. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A, 2014, 618: 182
|
[6] |
Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning (Q& P) processing to press hardening steel. Metall Mater Trans A, 2014, 45(9): 4022
|
[7] |
Kong H, Chao Q, Cai M H, et al. One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater Sci Eng A, 2017, 707: 538 doi: 10.1016/j.msea.2017.09.038
|
[8] |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 doi: 10.1016/j.scriptamat.2012.11.003
|
[9] |
Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanism of lath martensite plasticity. Acta Mater, 2016, 121: 202 doi: 10.1016/j.actamat.2016.09.006
|
[10] |
Zhang B, Du L X, Dong Y, et al. Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling. Mater Sci Eng A, 2020, 771: 138643 doi: 10.1016/j.msea.2019.138643
|
[11] |
Maruyama H. X-ray measurement of retained austenite volume fraction. J Jpn Soc Heat Treat, 1977, 17: 198
|
[12] |
Sugimoto K, Sakaguchi J, Iida T, et al. Stretch-flangeability of a high-strength TRIP type bainitic sheet steel. ISIJ Int, 2000, 40(9): 92
|
[13] |
朱國明, 鄺霜, 陳貴江, 等. 馬氏體對C–Si–Mn冷軋雙相鋼屈服特性的影響. 材料工程, 2011(4):66 doi: 10.3969/j.issn.1001-4381.2011.04.014
Zhu G M, Kuang S, Chen G J, et al. Effect of martensite on yield characteristics of cold rolled C–Si–Mn dual phase steel. J Mater Eng, 2011(4): 66 doi: 10.3969/j.issn.1001-4381.2011.04.014
|
[14] |
Akbarpour M R, Ekrami A. Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels. Mater Sci Eng A, 2008, 477(1-2): 306
|
[15] |
Sayed A A, Kheirandish S. Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Mater Sci Eng A, 2012, 532: 21 doi: 10.1016/j.msea.2011.10.056
|
[16] |
Zhu B, Liu Z, Wang Y N, et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel. Metall Mater Trans A, 2018, 49(4): 1304 doi: 10.1007/s11661-018-4484-8
|
[17] |
Du C, Hoefnagels J P M, Vaes R, et al. Plasticity of lath martensite by sliding of substructure boundaries. Scripta Mater, 2016, 120: 37
|
[18] |
Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A, 2011, 528(13-14): 4516 doi: 10.1016/j.msea.2011.02.032
|
[19] |
Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater, 2019, 164: 683 doi: 10.1016/j.actamat.2018.11.029
|
[20] |
Scott C P, Amirkhiz B S, Pushkareva I, et al. New insights into martensite strength and the damage behavior of dual phase steels. Acta Mater, 2018, 159: 112 doi: 10.1016/j.actamat.2018.08.010
|
[21] |
任勇強, 謝振家, 尚成嘉. 低碳多相鋼的組織調控與力學性能. 北京科技大學學報, 2013, 35(5):592
Ren Y Q, Xie Z J, Shang C J. Microstructure regulation and mechanical properties of low-carbon multiphase steels. J Univ Sci Technol Beijing, 2013, 35(5): 592
|
[22] |
Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels. J Iron Steel Res Int, 2010, 17(5): 44
|
[23] |
趙征志, 佟婷婷, 趙愛民, 等. 1300 MPa級0.14C–2.72Mn–1.3Si鋼的顯微組織和力學性能及加工硬化行為. 金屬學報, 2014, 50(10):1153 doi: 10.11900/0412.1961.2014.00113
Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C–2.72Mn–1.3Si steel. Acta Metall Sin, 2014, 50(10): 1153 doi: 10.11900/0412.1961.2014.00113
|
[24] |
Seyedrezai H, Pilkey A K, Boyd J D. Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel. Mater Sci Eng A, 2014, 594: 178
|
[25] |
Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels. Acta Mater, 2015, 95: 386 doi: 10.1016/j.actamat.2015.05.005
|
[26] |
Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des, 2012, 41: 370
|