Citation: | LIN Wen-hui, JIAO Shu-qiang, SUN Jian-kun, ZHOU Kai-xiao, LIU Min, SU Xing, LIU Qing. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter[J]. Chinese Journal of Engineering, 2020, 42(7): 854-861. doi: 10.13374/j.issn2095-9389.2019.11.23.001 |
[1] |
Gutte H, Schulz T, Neuhof G, et al. Process control in the oxygen steel production. Acta Metall Sin Engl Lett, 2000, 13(6): 1101
|
[2] |
李光輝, 劉青. 轉爐煉鋼過程工藝控制的發展與展望. 鋼鐵研究學報, 2013, 25(1):1
Li G H, Liu Q. Present status and prospect of BOF steelmaking process control. J Iron Steel Res, 2013, 25(1): 1
|
[3] |
Klingelhofer H, Schramm R, Lohndorf W, et al. Improving the converter process by use of a sublance. Steel Times, 1994, 222(4): 138
|
[4] |
Apeldoorn G J, Hubbeling P D, Gootjes P. 達涅利康力斯副槍系統的應用. 鋼鐵, 2004, 39(11):29 doi: 10.3321/j.issn:0449-749X.2004.11.007
Apeldoorn G J, Hubbeling P D, Gootjes P. Performance of Danieli Corus sublance systems. Iron Steel, 2004, 39(11): 29 doi: 10.3321/j.issn:0449-749X.2004.11.007
|
[5] |
左康林, 鄒俊蘇, 孫曉輝, 等. 轉爐副槍測量與成分預報技術. 煉鋼, 2009, 25(2):59
Zuo K L, Zou J S, Sun X H, et al. Sub-lance measuration and composition prediction in BOF steelmaking. Steelmaking, 2009, 25(2): 59
|
[6] |
吳明, 李應江. 煙氣分析與副槍動態控制煉鋼技術的實踐分析. 鋼鐵, 2009, 44(4):28 doi: 10.3321/j.issn:0449-749X.2009.04.007
Wu M, Li Y J. Practical analysis of dynamic control steelmaking technique of off gas analysis and assistant lance. Iron Steel, 2009, 44(4): 28 doi: 10.3321/j.issn:0449-749X.2009.04.007
|
[7] |
福味純一, 滝千尋, 畑中聡男, 等. 排ガス情報を利用した転爐吹錬の計算機制御技術の開発. 鉄と鋼, 1990, 76(11):192
Fukumi J, Taki C, Hatanaka T, et al. Development of refining control system in combined blowing converter based on exhaust gas information. Tetsu-to-Hagane, 1990, 76(11): 192
|
[8] |
Hu Z G, He P, Tan M X, et al. Continuous determination of bath carbon content on 150 t BOF by off-gas analyzer. J Univ Sci Technol Beijing, 2003, 10(6): 22
|
[9] |
Sun S, Liao D S, Pyke N, et al. Development of an offgas/model technology to replace sublance operation for KOBM endpoint carbon control at ArcelorMittal Dofasco. Iron Steel Technol, 2008, 5(11): 36
|
[10] |
Bruckner C, Rodhammer H, Wohlfart K, et al. Implementation of BOF level 2 with DYNACON model and LOMAS offgas analysis at Tangshan ISCO // Proceedings of Asia Steel International Conference (Asia Steel 2012). Beijing, 2012: 130
|
[11] |
王新華, 李金柱, 劉鳳剛. 轉型發展形勢下的轉爐煉鋼科技進步. 煉鋼, 2017, 33(1):1
Wang X H, Li J Z, Liu F G. Technological progress of BOF steelmaking in period of development mode transition. Steelmaking, 2017, 33(1): 1
|
[12] |
Ceriani A, Aprile G. Dynamic modeling of the BOF for endpoint prediction using EFSOP? technology results and implementation at Riva Taranto // AISTech Proceedings. Pittsburg, 2010: 997
|
[13] |
Liao D S, Sun S, Waterfall S, et al. Integrated KOBM steelmaking process control // Proceeding of the 6th International Congress on the Science and Technology of Steelmaking. Beijing, 2015: 107
|
[14] |
王肖, 周航, 李朋. 基于LOMAS煙氣分析的自動化煉鋼系統在100 t轉爐的應用. 河北冶金, 2018(9):58
Wang X, Zhou H, Li P. Application of automatic steelmaking system based on LOMAS flue gas analysis in 100 t converter. Hebei Metall, 2018(9): 58
|
[15] |
IRSID. Procédé et Dispositif Pour la Mesure Continue de la Teneur en Carbone d'un Bain Métallique en Cours D'affinage: Brevet d'invention fran?ais, 1309212. 1962-10-8
IRSID. Method and Arrangement for Measuring Continuously the Change of the Carbon Content of a Bath of Molten Metal: French Patent, 1309212. 1962-10-8
|
[16] |
Dumont-Fillon J, Vayssiere P, Trentini B. Continuous carbon determination in the basic oxygen processes. JOM, 1964, 16(6): 508 doi: 10.1007/BF03378283
|
[17] |
Meyer H W, Dukelow D A, Fischer M M. Static and dynamic control of the basic oxygen process. JOM, 1964, 16(6): 501 doi: 10.1007/BF03378282
|
[18] |
張貴玉, 萬雪峰, 林東, 等. 應用爐氣分析預測轉爐吹煉終點碳含量. 材料與冶金學報, 2007, 6(1):3 doi: 10.3969/j.issn.1671-6620.2007.01.001
Zhang G Y, Wan X F, Lin D, et al. Carbon content prediction at blowing end-point of converter with off-gas analysis. J Mater Metall, 2007, 6(1): 3 doi: 10.3969/j.issn.1671-6620.2007.01.001
|
[19] |
Glasgow J A, Porter W F, Morrill J. Development and operation of BOF dynamic control. JOM, 1967, 19(8): 81 doi: 10.1007/BF03378624
|
[20] |
植村卓郎, 山本哲也, 北川美教, 等. 和歌山製鉄所第三製鋼工場計算機制御. 住友金屬, 1973, 25(1):71
Uemura T, Yamamoto T, Kitagawa Y, et al. Process computer system at the No. 3 BOF shop in Wakayama Steel Works. Sumitomo Metal, 1973, 25(1): 71
|
[21] |
劉錕, 劉瀏, 何平, 等. 基于煙氣分析轉爐終點碳含量控制的新算法. 煉鋼, 2009, 25(1):33
Liu K, Liu L, He P, et al. A new algorithm of endpoint carbon content of BOF based on of off-gas analysis. Steelmaking, 2009, 25(1): 33
|
[22] |
屠海. 基于爐氣檢測的轉爐動態過程模型研究[學位論文]. 上海: 上海大學, 2002
Tu H. Study on Converter Dynamic Process Model Based on Flue Gas Detection[Dissertation]. Shanghai: Shanghai University, 2002
|
[23] |
李南, 林文輝, 曹玲玲, 等. 基于熔池混勻度的轉爐煙氣分析定碳模型. 工程科學學報, 2018, 40(10):1244
Li N, Lin W H, Cao L L, et al. Carbon prediction model for basic oxygen furnace off-gas analysis based on bath mixing degree. Chin J Eng, 2018, 40(10): 1244
|
[24] |
Li G H, Wang B, Liu Q, et al. A process model for BOF process based on bath mixing degree. Int J Miner Metall Mater, 2010, 17(6): 715 doi: 10.1007/s12613-010-0379-4
|
[25] |
Rout B K, Brooks G, Akbar Rhamdhani M, et al. Dynamic model of basic oxygen steelmaking process based on multizone reaction kinetics: modeling of decarburization. Metall Mater Trans B, 2018, 49(3): 1022 doi: 10.1007/s11663-018-1244-5
|
[26] |
Shukla A K, Deo B, Millman S, et al. An insight into the mechanism and kinetics of reactions in BOF steelmaking: theory vs practice. Steel Res Int, 2010, 81(11): 940 doi: 10.1002/srin.201000123
|