<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 42 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
DENG Nan-yang, SHI Xiao-fang, CHEN Jia-shun, CHANG Kai-hua, YU Wen-chun, WANG Jian-jun, CHANG Li-zhong. Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot[J]. Chinese Journal of Engineering, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001
Citation: DENG Nan-yang, SHI Xiao-fang, CHEN Jia-shun, CHANG Kai-hua, YU Wen-chun, WANG Jian-jun, CHANG Li-zhong. Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot[J]. Chinese Journal of Engineering, 2020, 42(4): 516-526. doi: 10.13374/j.issn2095-9389.2019.07.07.001

Numerical simulation of mold rotation and its effect on carbides in HSS ESR ingot

doi: 10.13374/j.issn2095-9389.2019.07.07.001
More Information
  • Corresponding author: E-mail: clz1997@163.com
  • Received Date: 2019-07-07
  • Publish Date: 2020-04-01
  • High-speed steel contains a large amount of carbides, the shape and distribution of which have an important influence on its quality. To improve the distribution of carbides in M2 high-speed steel, the temperature field and the shape of the metal pool during the mold-rotation process were investigated in detail using a numerical simulation. Moreover, the effect of the mold-rotation speed on the electroslag remelting process was investigated using a rotating bifilar electroslag remelting furnace under laboratory conditions. The morphology and distribution of carbides in an ESR ingot were observed using an SEM, and the composition of carbides was analyzed through an electrolytic extraction experiment. Results show that with increase in mold rotation speed, the high-temperature zone of the slag pool moves from the core to the edge. Moreover, the temperature distribution becomes uniform. The depth of the metal pool becomes shallow, and the thickness of the two-phase region decreases, which results in a short local solidification time and small secondary dendrite spacing. Correspondingly, with the increase in the mold rotation speed, the slag skin of ESR ingot becomes thin and more uniform than earlier. The cooling intensity of the mold on the ESR ingot is high, and the carbide network begins to break and become thin. The morphology of carbides changes from flake to fine rod. XRD analysis determines whether the mold rotates or not, carbides always comprise M2C, MC, and M6C. However, the content of M2C increases and the contents of MC and M6C decrease with the increase in mold-rotation speed. The main reason for the improvement in the carbide structure is that the mold rotation decreases the metal pool depth and two-phase zone thickness, which improves the solidification conditions and reduces the element segregation.

     

  • loading
  • [1]
    Luan Y K, Song N N, Bai Y L, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process Technol, 2010, 210(3): 536 doi: 10.1016/j.jmatprotec.2009.10.017
    [2]
    Ji Y L, Zhang W, Chen X Y, et al. Increasing solidification rate of M2 high-speed steel ingot by fusible metal mold. Acta Metall Sin (English Lett), 2016, 29(4): 382 doi: 10.1007/s40195-016-0398-x
    [3]
    李正邦. 電渣冶金的理論與實踐. 北京: 冶金工業出版社, 2010

    Li Z B. Electroslag Metallurgy Theory and Practice. Beijing: Metallurgical Industry Press, 2010
    [4]
    賀寶, 李晶, 史成斌, 等. 電渣重熔過程冷卻強度對含鎂H13鋼中碳化物的影響. 工程科學學報, 2016, 38(12):1720

    He B, Li J, Shi C B, et al. Effect of cooling intensity on carbides in Mg-containing H13 steel during the electroslag remelting process. Chin J Eng, 2016, 38(12): 1720
    [5]
    Hellman P. High-speed steels by powder metallurgy. Scand J Metall, 1998, 27(1): 44
    [6]
    Zhong H L, Fang Y, Kuang C, et al. Development of powder metallurgy high speed steel. Maters Sci Forum, 2010, 638-642: 1854 doi: 10.4028/www.scientific.net/MSF.638-642.1854
    [7]
    Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030
    [8]
    Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speed steel by rare earth metals and spheroidizing treatment. J Southeast Univ English Ed, 2014, 30(4): 445
    [9]
    Wang M J, Chen L, Wang Z X, et al. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry. J Rare Earths, 2011, 29(11): 1089 doi: 10.1016/S1002-0721(10)60604-7
    [10]
    Chang L Z, Shi X F, Cong J Q, et al. Effects of relative motion between consumable electrodes and mould on solidification structure of electroslag ingots during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(8): 611 doi: 10.1179/1743281213Y.0000000177
    [11]
    Chang L Z, Shi X F, Wang R X, et al. Effect of mold rotation on inclusion distribution in bearing steel during electroslag remelting process. China Foundry, 2014, 11(5): 452
    [12]
    葛蓓蕾. 電渣重熔過程中渣成分變化對電渣冶金過程影響的數值模擬[學位論文]. 西安: 西安建筑科技大學, 2016

    Ge B L. Numerical Simulation of Slag Composition Change Influence on ESR Process[Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2016
    [13]
    李寶寬, 王強. 基于數值模擬的電渣重熔理論與技術. 北京: 科學出版社, 2016

    Li B K, Wang Q. Theory and Technology of Electroslag Remelting Based on Numerical Simulation. Beijing: Science Press, 2016
    [14]
    王芳, 李寶寬. 雙級串聯電渣重熔系統電磁場和焦耳熱場研究. 東北大學學報(自然科學版), 2011, 32(4):533

    Wang F, Li B K. Electromagnetic field and Joule heating of an electroslag remelting process with two series-connected electrodes. J Northeast Univ Nat Sci, 2011, 32(4): 533
    [15]
    Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel. J Iron Steel Res Int, 2017, 24(1): 43 doi: 10.1016/S1006-706X(17)30007-9
    [16]
    Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater Sci Technol, 2014, 30(1): 116 doi: 10.1179/1743284713Y.0000000338
    [17]
    馮唯偉. 含氮與稀土M2高速鋼碳化物特性研究[學位論文]. 秦皇島: 燕山大學, 2013

    Feng W W. The Carbide Characteristics of M2 High Speed Steel Containing Nitrogen and Rare Earth[Dissertation]. Qinhuangdao: Yanshan University, 2013
    [18]
    常立忠, 李正邦. 電渣重熔過程中金屬凝固的控制方法. 煉鋼, 2007, 23(4):56 doi: 10.3969/j.issn.1002-1043.2007.04.015

    Chang L Z, Li Z B. Method of controlling solidification quality in electroslag remelting process. Steelmaking, 2007, 23(4): 56 doi: 10.3969/j.issn.1002-1043.2007.04.015
    [19]
    弗萊明斯 M C. 凝固過程. 關玉龍, 屠寶洪, 許誠信, 譯. 北京: 冶金工業出版社, 1981

    Flemings M C. Solidification processing. Translated by Guan Y L, Tu B H, Xu C X. Beijing: Metallurgical Industry Press, 1981
    [20]
    王啟明, 成國光, 黃宇. M2高速鋼大尺寸碳化物的形貌特征及析出機理. 鋼鐵, 2018, 53(1):65

    Wang Q M, Cheng G G, Huang Y. Morphology and precipitation mechanism of large carbides in M2 high speed steel. Iron Steel, 2018, 53(1): 65
    [21]
    鄧玉昆, 陳景榕, 王世章. 高速工具鋼. 北京: 冶金工業出版社, 2002

    Deng Y R, Chen J R, Wang S Z. High Speed Tool Steel. Beijing: Metallurgical Industry Press, 2002
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (1607) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164