Citation: | YANG Tao, YANG Zhan-bing, LI Fan. Synthesis and structural characterization of Pt?Au?Cu ternary core-shell nanowires[J]. Chinese Journal of Engineering, 2019, 41(12): 1550-1557. doi: 10.13374/j.issn2095-9389.2019.07.04.031 |
[1] |
Wang J Y, Wang H L, Fan Y. Techno-economic challenges of fuel cell commercialization. Engineering, 2018, 4(3): 352 doi: 10.1016/j.eng.2018.05.007
|
[2] |
Wang Y J, Zhao N N, Fang B Z, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev, 2015, 115(9): 3433 doi: 10.1021/cr500519c
|
[3] |
Greeley J, Stephens I E L, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem, 2009, 1(7): 552 doi: 10.1038/nchem.367
|
[4] |
Ma S Y, Li H H, Hu B C, et al. Synthesis of low Pt-based quaternary PtPdAuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J Am Chem Soc, 2017, 139(16): 5890 doi: 10.1021/jacs.7b01482
|
[5] |
Garlyyev B, Kratzl K, Rück M, et al. Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angew Chem Int Ed, 2019, 58(28): 9596 doi: 10.1002/anie.201904492
|
[6] |
Shao M H, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett, 2011, 11(9): 3714 doi: 10.1021/nl2017459
|
[7] |
Park J, Zhang L, Choi S I, et al. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano, 2015, 9(3): 2635 doi: 10.1021/nn506387w
|
[8] |
Gómez-Marín A M, Feliu J M. Oxygen reduction on nanostructured platinum surfaces in acidic media: promoting effect of surface steps and ideal response of Pt(111). Catal Today, 2015, 244: 172 doi: 10.1016/j.cattod.2014.05.009
|
[9] |
Cui C H, Gan L, Heggen M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Mater, 2013, 12(8): 765 doi: 10.1038/nmat3668
|
[10] |
Chen G Y, Kuttiyiel K A, Li M, et al. Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. J Mater Chem A, 2018, 6(42): 20725 doi: 10.1039/C8TA06686H
|
[11] |
Bao S X, Vara M, Yang X, et al. Facile synthesis of Pd@Pt3-4l core-shell octahedra with a clean surface and thus enhanced activity toward oxygen reduction. Chem Cat Chem, 2017, 9(3): 414
|
[12] |
Cui C H, Yu S H. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic acitivity for fuel cell applications. Acc Chem Res, 2012, 46(7): 1427
|
[13] |
Lu Y X, Du S F, Steinberger-Wilckens R. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells-a review. Appl Catal B, 2016, 199: 292 doi: 10.1016/j.apcatb.2016.06.022
|
[14] |
Zhang J T, Li C M. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev, 2012, 41(21): 7016 doi: 10.1039/c2cs35210a
|
[15] |
Koenigsmann C, Santulli A C, Gong K P, et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J Am Chem Soc, 2011, 133(25): 9783 doi: 10.1021/ja111130t
|
[16] |
Cherevko S, Xing X L, Chung C H. Pt and Pd decorated Au nanowires: extremely high activity of ethanol oxidation in alkaline media. Electrochim Acta, 2011, 56(16): 5771 doi: 10.1016/j.electacta.2011.04.052
|
[17] |
Cui C H, Li H H, Liu X J, et al. Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal, 2012, 2(6): 916 doi: 10.1021/cs300058c
|
[18] |
Niu Z Q, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139(21): 7348 doi: 10.1021/jacs.7b02884
|
[19] |
Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater, 2007, 6(3): 241 doi: 10.1038/nmat1840
|
[20] |
Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220 doi: 10.1126/science.1134569
|
[21] |
Wang C, Van der Vliet D, More K L, et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett, 2010, 11(3): 919
|
[22] |
Rathmell A R, Wiley B J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater, 2011, 23(41): 4798 doi: 10.1002/adma.201102284
|
[23] |
Han M, Liu S L, Zhang L Y, et al. Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction. ACS Appl Mater Interfaces, 2012, 4(12): 6654 doi: 10.1021/am301814y
|
[24] |
Hong W, Wang J, Wang E. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res, 2015, 8(7): 2308 doi: 10.1007/s12274-015-0741-y
|
[25] |
Peng Z M, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4(2): 143 doi: 10.1016/j.nantod.2008.10.010
|
[26] |
謝學軍, 呂珂, 晏敏, 等. 銅水體系電位-pH圖與發電機內冷水pH調節防腐. 腐蝕科學與防護技術, 2007, 19(3):162 doi: 10.3969/j.issn.1002-6495.2007.03.002
Xie X J, Lü K, Yan M, et al. Potential-pH chart for copper-water system and controlling pH of internal cooling water to prevent generator from corrosion. Corros Sci Prot Technol, 2007, 19(3): 162 doi: 10.3969/j.issn.1002-6495.2007.03.002
|
[27] |
楊熙珍, 楊武. 金屬腐蝕電化學熱力學: 電位-pH圖及其應用. 北京: 化學工業出版社, 1991
Yang X Z, Yang W. Metal Corrosion Electrochemical Thermodynamics: Pourbaix Diagram and Their Application. Beijing: Chemical Industry Press, 1991
|
[28] |
Goia D, Matijevi? E. Tailoring the particle size of monodispersed colloidal gold. Colloids Surf A, 1999, 146(1-3): 139 doi: 10.1016/S0927-7757(98)00790-0
|
[29] |
Bauer E, van der Merwe J H. Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys Rev B, 1986, 33(6): 3657 doi: 10.1103/PhysRevB.33.3657
|
[30] |
Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc, 2008, 130(22): 6949 doi: 10.1021/ja801566d
|
[31] |
Markov I V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy. 3rd Ed. Singapore: World Scientific, 2016
|
[32] |
Wang Z L, Ahmad T S, El Sayed M A. Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf Sci, 1997, 380(2-3): 302 doi: 10.1016/S0039-6028(97)05180-7
|
[33] |
Sarkar A, Manthiram A. Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C, 2010, 114(10): 4725 doi: 10.1021/jp908933r
|