<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Current research and latest developments on refractories used as ladle linings[J]. Chinese Journal of Engineering, 2019, 41(6): 695-708. doi: 10.13374/j.issn2095-9389.2019.06.001
Citation: WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Current research and latest developments on refractories used as ladle linings[J]. Chinese Journal of Engineering, 2019, 41(6): 695-708. doi: 10.13374/j.issn2095-9389.2019.06.001

Current research and latest developments on refractories used as ladle linings

doi: 10.13374/j.issn2095-9389.2019.06.001
More Information
  • Corresponding author: HOU Xin-mei, E-mail: houxinmei01@126.com
  • Received Date: 2018-10-06
  • Publish Date: 2019-06-01
  • Non-metallic inclusions significantly influence the properties of steels. Take heavy rail steel as an example, Al2O3 inclusions can become fatigue source under cyclic stress, resulting in the rupture of the steel. Existing technologies and equipment can effectively reduce the amount and harm brought about by such inclusions, but they cannot guarantee the complete removal of large-sized and high-melting-temperature inclusions. Large-sized non-metallic inclusions give rise to instability in high-quality steels; as such, they are one of the bottlenecks in the development of steel. In the steel-making process, refractories in close contact with molten steel are a main source of large-sized non-metallic inclusions. Therefore, adopting appropriate ladle-lining refractories for refining and alloying is vital. This paper summarized the current research and latest developments in refractories used as ladle linings, and analyzed the application background and existing problems of traditional ladle lining refractories. Based on this discussion, future research directions regarding refractories suitable for the smelting of ultra-low-oxygen steel (or clean steel) as well as approaches to precisely control refractory properties via the reasonable selection of material components and structures were then provided. Novel ladle-lining refractories must possess not only excellent thermomechanical properties but also the ability to purify molten steel.

     

  • loading
  • [1]
    王新華, 陳斌, 姜敏, 等. 渣-鋼反應對高強度合金結構鋼中生成較低熔點非金屬夾雜物的影響. 鋼鐵, 2008, 43(12): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200812007.htm

    Wang X H, Chen B, Jiang M, et al. Effect of slag-metal reaction on formation of non-metallic inclusions of lower melting temperature in high strength alloyed structural steel. Iron Steel, 2008, 43(12): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200812007.htm
    [2]
    徐匡迪, 肖麗俊. 特殊鋼精煉中的脫氧及夾雜物控制. 鋼鐵, 2012, 47(10): 1

    Xu K D, Xiao L J. Deoxidation andinclusion control in special steel refining. Iron Steel, 2012, 47(10): 1
    [3]
    王新華, 姜敏, 于會香, 等. 超低氧特殊鋼中非金屬夾雜物研究. 煉鋼, 2015, 31(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201506001.htm

    Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels. Steelmaking, 2015, 31(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201506001.htm
    [4]
    Li J Z, Jiang M, He X F, et al. Investigation on nonmetallic inclusions in ultra-low-oxygen special steels. Metall Mater Trans B, 2016, 47(4): 2386 doi: 10.1007/s11663-016-0687-9
    [5]
    楊虎林, 何平, 翟玉春. 高品質軸承鋼超低氧含量和非金屬夾雜物控制的進展. 特殊鋼, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005

    Yang H L, He P, Zhai Y C. Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel. Spec Steel, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005
    [6]
    Park J S, Park J H. Effect of slag composition on the concentration of Al2O3 in the inclusions in Si-Mn-killed steel. Metall Mater Trans B, 2014, 45(3): 953 doi: 10.1007/s11663-013-9998-2
    [7]
    劉家占. 耐火材料對鋼中氧含量影響的實驗研究[學位論文]. 沈陽: 東北大學, 2011

    Liu J Z. Experimental Study on the Effect of Refractory on Oxygen Content in Molten Steel[Dissertation]. Shenyang: Northeastern University, 2011
    [8]
    Guo J, Fang K M, Guo H J, et al. Determination of three-dimensional morphology and inner structure of second-phase inclusions in metals by non-aqueous solution electrolytic and room temperature organic methods. Metals, 2018, 8(1): 68 doi: 10.3390/met8010068
    [9]
    Zhang X W, Zhang L F, Yang W, et al. Comparison of 2D and 3D morphology of non-metallic inclusions in steel using different methods. Metall Res Technol, 2017, 114(1): 113 doi: 10.1051/metal/2016056
    [10]
    姜桂連, 李京社, 孫開明, 等. 30CrMo氣瓶鋼中大型夾雜物的研究. 煉鋼, 2009, 25(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ200904018.htm

    Jiang G L, Li J S, Sun K M, et al. Study on macro inclusions in 30CrMo gas cylinder steel. Steelmaking, 2009, 25(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ200904018.htm
    [11]
    Janis D, Inoue A, Karasev P G, et al. Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys. Adv Mater Sci Eng, 2014, 2014: 210486 http://www.oalib.com/paper/3066102
    [12]
    李俊國, 曾亞南, 王樹華, 等. 20CrMnTi冶煉過程中夾雜物行為研究. 鋼鐵釩鈦, 2010, 31(1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201001011.htm

    Li J G, Zeng Y N, Wang S H, et al. Research on the non-metallic inclusion in 20CrMnTi steel during the process of refining and casting. Iron Steel Van Tit, 2010, 31(1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201001011.htm
    [13]
    Stampa E, Cipparrone M. Detection of harmful inclusions in steels for tire cord. Wire J Int, 1987, 20(3): 44 http://www.researchgate.net/publication/294523280_DETECTION_OF_HARMFUL_INCLUSIONS_IN_STEELS_FOR_TIRE_CORD
    [14]
    Sawai T, Wakoh M, Ueshima Y, et al. Analysis of oxide dispersion during solidification in Ti, Zr-deoxidized steels. ISIJ Int, 1992, 32(1): 169 doi: 10.2355/isijinternational.32.169
    [15]
    Yaguchi H, Tsuchida T, Shindou Y, et al. Non-lead-added free machining steel by sulfide inclusion morphology modification. Kobe Res Develop Jpn, 2002, 52(3): 62 http://www.researchgate.net/publication/289302749_Non-lead-added_free_machining_steel_by_sulfide_inclusion_morphology_modification
    [16]
    Matsui N, Watari K. Wear reduction of carbide tools observed in cutting Ca-added steels for machine structural use. ISIJ Int, 2006, 46(11): 1720 doi: 10.2355/isijinternational.46.1720
    [17]
    Runner D L, Maeda S, Gale J P, et al. Start-up of tire cord though USS/KOBE's billet caster//1998 Steelmaking Conference Proceeding. Toronto, 1998: 129
    [18]
    楊曉蔚. 對軸承鋼的一般認識和深入認識. 軸承, 2012(9): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201209020.htm

    Yang X W. General understanding and deep understanding of bearing steel. Bearing, 2012(9): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201209020.htm
    [19]
    Chan C F, Ko Y C. Effect of CaO content on the hot strength of alumina-spine castables in the temperature range of 1000℃ to 1500℃. J Am Ceram Soc, 1998, 81(11): 2957 http://www.ams.org/mathscinet-getitem?mr=2349
    [20]
    沈上越. 太鋼一等高鋁磚用于盛鋼桶襯磚的侵蝕機理研究. 硅酸鹽通報, 1992(4): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT199204010.htm

    Shen S Y. Study on erosion mechanism of grade Ⅰ alumina bricks as ladle lining in Taigang. Bull Chin Ceram Soc, 1992(4): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT199204010.htm
    [21]
    李乃動, 謝宜才, 燕宿祥, 等. 添加物對高鋁磚結構和性能的影響. 耐火材料, 1999, 33(3): 158 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL903.011.htm

    Li N D, Xie Y C, Yan S X, et al. Effect of additives on the structure and properties of high alumina bricks. Refractories, 1999, 33(3): 158 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL903.011.htm
    [22]
    Resende W S, Stoll R M, Justus S M, et al. Key features of alumina/magnesia/graphite refractories for steel ladle lining. J Eur Ceram Soc, 2000, 20(9): 1419 doi: 10.1016/S0955-2219(00)00004-2
    [23]
    Akkurt S, Leigh H D. Corrosion of MgO-C ladle refractories. Am Ceram Soc Bull, 2003, 82(5): 32 http://www.researchgate.net/publication/292543930_Corrosion_of_MgO-C_ladle_refractories
    [24]
    李遂方. 鋁鎂碳磚及其在鋼包上的應用. 煉鋼, 1990(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ199002002.htm

    Li S F. Aluminum-magnesium carbon brick and its application on ladle. Steelmaking, 1990(2): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ199002002.htm
    [25]
    姚華柏, 姚蘇哲, 駱昶, 等. 鎂碳磚的研究現狀與發展趨勢. 工程科學學報, 2018, 40(3): 253 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201803001.htm

    Yao H B, Yao S Z, Luo C, et al. Current research and developing trend of MgO-C bricks. Chin J Eng, 2018, 40(3): 253 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201803001.htm
    [26]
    Lee W E, Zhang S. Melt corrosion of oxide and oxide-carbon refractories. Int Mater Rev, 1999, 44(3): 77 doi: 10.1179/095066099101528234
    [27]
    朱伯銓, 張文杰. 低碳鎂碳磚的研究現狀與發展. 武漢科技大學學報(自然科學版), 2008, 31(3): 233 doi: 10.3969/j.issn.1674-3644.2008.03.003

    Zhu B Q, Zhang W J. Research of low-carbon magnesia carbon bricks: present situation and development. J Wuhan Univ Sci Technol Nat Sci Ed, 2008, 31(3): 233 doi: 10.3969/j.issn.1674-3644.2008.03.003
    [28]
    石永午, 賈新軍, 魏鵬程. 低碳鎂碳磚的研制和應用. 包鋼科技, 2012, 38(1): 17 doi: 10.3969/j.issn.1009-5438.2012.01.007

    Shi Y W, Jia X J, Wei P C. Development and applications of low-carbon magnesia carbon bricks. Sci Technol Baotou Steel, 2012, 38(1): 17 doi: 10.3969/j.issn.1009-5438.2012.01.007
    [29]
    Zhang S, Marriott N J, Lee W E. Thermochemistry and microstructures of MgO-C refractories containing various antioxidants. J Eur Ceram Soc, 2001, 21(8): 1037 doi: 10.1016/S0955-2219(00)00308-3
    [30]
    Gokce A S, Gurcan C, Ozgen S, et al. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks. Ceram Int, 2008, 34(2): 323 doi: 10.1016/j.ceramint.2006.10.004
    [31]
    賀智勇, 彭小艷, 李林, 等. ZrB2對低碳鎂碳材料抗氧化性能的影響. 耐火材料, 2006, 40(4): 280 doi: 10.3969/j.issn.1001-1935.2006.04.010

    He Z Y, Peng X Y, Li L, et al. Effect of ZrB2 on oxidation resistance of low-carbon MgO-C materials. Refactories, 2006, 40(4): 280 doi: 10.3969/j.issn.1001-1935.2006.04.010
    [32]
    徐娜, 李志堅, 吳鋒, 等. TiN提高鎂碳磚抗渣侵蝕機理的研究. 硅酸鹽通報, 2008, 27(5): 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200805033.htm

    Xu N, Li Z J, Wu F, et al. Research on mechanism of improving of slag corrosion-resistance of MgO-C brick with TiN. Bull Chin Ceram Soc, 2008, 27(5): 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200805033.htm
    [33]
    Yamaguchi A, Zhang S W. Synthesis and some properties of Al4 SiC4. J Ceram Soc Jpn, 1995, 103(1193): 20 doi: 10.2109/jcersj.103.20
    [34]
    Xing X M, Li B, Chen J H, et al. Formation mechanism of large size plate-like Al4 SiC4 grains by a carbothermal reduction method. CrystEngComm, 2018, 20: 1399 doi: 10.1039/C7CE02193C
    [35]
    Xing X M, Chen J H, Bei G P, et al. Synthesis of Al4 SiC4 powders via carbothermic reduction: reaction and grain growth mechanisms. J Adv Ceram, 2017, 6(4): 351 doi: 10.1007/s40145-017-0247-z
    [36]
    王志發, 張永春, 李如春, 等. 石墨坩堝浸漬法抗氧化試驗研究. 非金屬礦, 2004, 27(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200403001.htm

    Wang Z F, Zhang Y C, Li R C, et al. Experimental study on anti-oxidation of graphite crucible impregnation. Non-Metallic Mines, 2004, 27(3): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200403001.htm
    [37]
    歐陽德剛. 含碳耐火材料抗氧化涂料的現狀與發展趨勢. 工業加熱, 2005, 34(4): 51 doi: 10.3969/j.issn.1002-1639.2005.04.015

    Ouyang D G. Present status and development of anti-oxidation coatings for carbon-containing refractory. Ind Heat, 2005, 34(4): 51 doi: 10.3969/j.issn.1002-1639.2005.04.015
    [38]
    Tamura T, Tsynemi O, Shigeyuki T, Nano-tech refractories-1: the development of the nano structural matrix//Proceedings of Unified International Technical Conference on Refractories. Osaka, 2003: 517
    [39]
    Zhu T B, Li Y W, Sang S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories. Ceram Int, 2014, 40(3): 4333 doi: 10.1016/j.ceramint.2013.08.101
    [40]
    史曉強, 李林, 彭小艷. 納米炭黑對鎂碳磚力學性能和熱震性的影響. 中國冶金, 2015, 25(6): 17 doi: 10.3969/j.issn.1007-0958.2015.06.010

    Shi X Q, Li L, Peng X Y. Effects of nanometer carbon black on mechanical properties and thermal shock resistance of MgO-C bricks. China Metall, 2015, 25(6): 17 doi: 10.3969/j.issn.1007-0958.2015.06.010
    [41]
    顏正國, 陳偉, 于景坤. B4C-C復合粉體的合成及其在低碳鎂碳磚中的應用. 過程工程學報, 2009, 9(5): 1011 doi: 10.3321/j.issn:1009-606X.2009.05.030

    Yan Z G, Chen W, Yu J K. Synthesis of B4C-C composite powder and its application in low carbon MgO-C bricks. Chin J Process Eng, 2009, 9(5): 1011 doi: 10.3321/j.issn:1009-606X.2009.05.030
    [42]
    華旭軍, 朱伯銓, 李雪冬, 等. TiC-C復合粉體的制備及其對低碳鎂碳磚抗氧化性能的影響. 武漢科技大學學報(自然科學版), 2007, 30(2): 145 doi: 10.3969/j.issn.1674-3644.2007.02.010

    Hua X J, Zhu B Q, Li X D, et al. TiC-C compound powder: synthesis and its influence on oxidation resistance of low-carbon MgO-C bricks. J Wuhan Univ Sci Technol Nat Sci Ed, 2007, 30(2): 145 doi: 10.3969/j.issn.1674-3644.2007.02.010
    [43]
    Li L, Tang G S, He Z Y, et al. Influences of black carbon addition on mechanical performance of low-carbon MgO-C composite. J Iron Steel Res Int, 2010, 17(12): 75 doi: 10.1016/S1006-706X(10)60201-4
    [44]
    羅明, 李亞偉, 金勝利, 等. 碳納米管增強陶瓷基復合材料的研究與展望. 材料導報, 2010, 24(專輯): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2010S1050.htm

    Luo M, Li Y W, Jin S L, et al. Research and outlook of carbon nanotubes reinforced ceramic matrix composites. Mater Rev, 2010, 24(Spec): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2010S1050.htm
    [45]
    Aneziris C G, Hubalkova J, Barabas R. Microstructure evaluation of MgO-C refractories with TiO2-and Al-additions. J Eur Ceram Soc, 2007, 27(1): 73 doi: 10.1016/j.jeurceramsoc.2006.03.001
    [46]
    曹亞平, 鄢文, 李楠. Si-SiC復合粉添加量對低碳鎂碳耐火材料性能的影響. 耐火材料, 2016, 50(3): 170 doi: 10.3969/j.issn.1001-1935.2016.03.004

    Cao Y P, Yan W, Li N. Effect of Si-SiC composite powder addition on properties of low-carbon MgO-C refractories. Refractories, 2016, 50(3): 170 doi: 10.3969/j.issn.1001-1935.2016.03.004
    [47]
    王志強, 朱伯銓, 方斌祥, 等. B4C和Si組合抗氧化劑對低碳MgO-C磚抗氧化性能的影響. 耐火材料, 2008, 42(3): 161 doi: 10.3969/j.issn.1001-1935.2008.03.001

    Wang Z Q, Zhu B Q, Fang B X, et al. Effects of B4C and Si antioxidant on oxidation resistance of low-carbon MgO-C bricks. Refractories, 2008, 42(3): 161 doi: 10.3969/j.issn.1001-1935.2008.03.001
    [48]
    張立峰. 鋼中非金屬夾雜物幾個需要深入研究的課題. 煉鋼, 2016, 32(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604002.htm

    Zhang LF. Several important scientific research points of non-metallic inclusions in steel. Steelmaking, 2016, 32(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201604002.htm
    [49]
    高梅, 李朝云, 王團收, 等. 燒結尖晶石細粉加入量對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2018, 52(1): 56 doi: 10.3969/j.issn.1001-1935.2018.01.014

    Gao M, Li Z Y, Wang T S, et al. Influence of sintered spinel fines on properties of corundum-spinel castables. Refractories, 2018, 52(1): 56 doi: 10.3969/j.issn.1001-1935.2018.01.014
    [50]
    吳永生, 任林, 王團收, 等. 二氧化硅微粉對無水泥剛玉-尖晶石澆注料抗熱震性能的影響//第十三屆全國不定形耐火材料學術會議和2015耐火原料學術交流會. 青島, 2015: 22

    Wu Y S, Ren L, Wang T S, et al. Effect of silica micro-powder on thermal shock resistance of cement-free corundum-spinel castables//Proceedings of the 13th National Conference on Unshaped Refractory Materials and the 2015 Academic Conference on Refractory Materials. Qingda, 2015: 22
    [51]
    姚金甫, 張恩甫, 田守信. α-Al2O3微粉對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2008, 42(3): 209 doi: 10.3969/j.issn.1001-1935.2008.03.012

    Yao J F, Zhang E F, Tian S X. Influence of ultrafine α-Al2O3 on properties of corundum spinel castables. Refractories, 2008, 42(3): 209 doi: 10.3969/j.issn.1001-1935.2008.03.012
    [52]
    連偉康, 唐冰杰, 魏軍從, 等. ZrO2微粉加入量對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2018, 52(4): 250 doi: 10.3969/j.issn.1001-1935.2018.04.003

    Lian W K, Tang B J, Wei J C, et al. Effects of ZrO2 micropowder addition on performances of corundum spinel castables. Refractories, 2018, 52(4): 250 doi: 10.3969/j.issn.1001-1935.2018.04.003
    [53]
    李志剛, 葉方保. 加入納米碳酸鈣對剛玉-尖晶石質澆注料性能的影響. 耐火材料, 2012, 46(6): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201206003.htm

    Li Z G, Ye F B. Effect of nano calcium carbonate on properties of corundum-spinel castables. Refractories, 2012, 46(6): 406 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201206003.htm
    [54]
    賈全利, 葉方保, 鐘香崇. TiO2加入量對剛玉-尖晶石澆注料性能的影響. 耐火材料, 2009, 43(6): 417 doi: 10.3969/j.issn.1001-1935.2009.06.005

    Jia Q L, Ye F B, Zhong X C. Effect of TiO2 addition on properties of corundum spinel castables. Refractories, 2009, 43(6): 417 doi: 10.3969/j.issn.1001-1935.2009.06.005
    [55]
    張殿軍, 王會先. 不同堿度的精煉渣對剛玉-尖晶石澆注料的侵蝕行為. 耐火材料, 2002, 36(4): 215 doi: 10.3969/j.issn.1001-1935.2002.04.010

    Zhang D J, Wang H X. Corrosion behavior of refining slags with different basicities to corundum-spinel castable. Refractories, 2002, 36(4): 215 doi: 10.3969/j.issn.1001-1935.2002.04.010
    [56]
    賈全利, 葉方保, 鐘香崇. 水泥對剛玉-尖晶石澆注料抗侵蝕性影響研究. 鄭州大學學報(工學版), 2011, 32(1): 43 doi: 10.3969/j.issn.1671-6833.2011.01.011

    Jia Q L, Ye F B, Zhong X C. Effects of cement addition on the slag resistance of alumina-spinel castables. J Zhengzhou Univ Eng Sci, 2011, 32(1): 43 doi: 10.3969/j.issn.1671-6833.2011.01.011
    [57]
    郜劍英, 周寶余, Bruno Touzo, 等. CMA72加入量對剛玉-尖晶石澆注料性能的影響//第十五屆全國耐火材料青年學術報告會論文集. 揚州, 2016: 231

    Gao J Y, Zhou B Y, Bruno T, et al. Effect of CMA72 addition on the properties of corundum-spinel castables//Proceedings of the 15th National Refractory Youth Academic Conference. Yangzhou, 2016: 231
    [58]
    Ke C M, Li N, Mo J N. Contribution of lime based tundish working lining to clean steel making//Proceedings of 38th Annual Conference of Metallurgists of CIM-Advances in Refractories for the Metallurgical Industries. Quebec, 1999: 177
    [59]
    Wei Y W, Li N. Refractories for clean steel making. Am Ceram Soc Bull, 2002, 81(5): 32 http://www.researchgate.net/publication/291878532_Refractories_for_clean_steel_making
    [60]
    北村. タアグネツアの水化特性. Taikabutsu, 1996, 48(3): 112
    [61]
    Shi H S, Zhao Y J, Li W W. Effects of temperature on the hydration characteristics of free lime. Cem Concr Res, 2002, 32(5): 789 doi: 10.1016/S0008-8846(02)00714-7
    [62]
    侯冬枝, 張文杰, 顧華志, 等. 聚磷酸鹽表面處理鎂鈣砂的抗水化性能. 耐火材料, 2002, 36(1): 16 doi: 10.3969/j.issn.1001-1935.2002.01.005

    Hou D Z, Zhang W J, Gu H Z, et al. Hydration resistance of MgO-CaO clinker treated by polyphosphate. Refractories, 2002, 36(1): 16 doi: 10.3969/j.issn.1001-1935.2002.01.005
    [63]
    Ghosh A, Tripathi H S. Sintering behaviour and hydration resistance of reactive dolomite. Ceram Int, 2012, 38(2): 1315 doi: 10.1016/j.ceramint.2011.09.005
    [64]
    林彬蔭, 吳清順. 耐火礦物原料. 北京: 冶金工業出版社, 1989

    Lin B Y, Wu Q S. Refractory Mineral Material. Beijing: Metallurgical Industry Press, 1989
    [65]
    Chen M, Lu C Y, Yu J K. Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J Eur CeramSoc, 2007, 27(16): 4633 doi: 10.1016/j.jeurceramsoc.2007.04.001
    [66]
    陳開獻, 陳肇友. 混合稀土氧化物與Fe2O3對白云石燒結性能和抗水化性能的影響. 耐火材料, 1992, 26(4): 187

    Chen K X, Chen Z Y. Effects of mixed rare earth oxides and Fe 2 O3 on the sintering properties and anti-hydration properties of dolomite. Refractories, 1992, 26(4): 187
    [67]
    鐘香崇. 展望新一代優質高效耐火材料. 耐火材料, 2003, 37(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL200301000.htm

    Zhong X C. Looking ahead a new generation of high performance refractory ceramics. Refractories, 2003, 37(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL200301000.htm
    [68]
    陳肇友, 田守信. 耐火材料與潔凈鋼的關系. 耐火材料, 2004, 38(4): 219 doi: 10.3969/j.issn.1001-1935.2004.04.001

    Chen Z Y, Tian S X. Relationship between clean steel and refractories. Refractories, 2004, 38(4): 219 doi: 10.3969/j.issn.1001-1935.2004.04.001
    [69]
    Bannenberg N. Demands on refractory material for clean steel production//Proceedings of Unified International Technical Conference on Refractories. Kyoto, 1995
    [70]
    徐勇. 添加納米顆粒對鎂鉻耐火材料抗侵蝕性能的改善. 耐火與石灰, 2015, 40(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-GWLH201504018.htm

    Xu Y. The improvement of anti-erosion performance of magnesium-chrome refractories via adding nanoparticles. Refract Lime, 2015, 40(4): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-GWLH201504018.htm
    [71]
    祝洪喜, 鄧承繼, 白晨, 等. 耐火材料連續顆粒分布的緊密堆積模型. 武漢科技大學學報(自然科學版), 2008, 31(2): 159 doi: 10.3969/j.issn.1674-3644.2008.02.012

    Zhu H X, Deng C J, Bai C, et al. Grain close packing model of refractory with continuous particle size distribution. J Wuhan Univ Sci Technol Nat Sci Ed, 2008, 31(2): 159 doi: 10.3969/j.issn.1674-3644.2008.02.012
    [72]
    葉超. 鎂鋁質鋼包精煉用耐火材料與鋼液相互作用的基礎研究[學位論文]. 北京: 北京科技大學, 2008

    Ye C. Investigation on Interaction between MgO-Al2O3 Refractory and Molten Steel in Refining Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2008
    [73]
    Chen J H, Chen H Y, Mi W J, et al. Substitution of Ba for Ca in the structure of CaAl12O19. J Am Ceram Soc, 2017, 100(1): 413 doi: 10.1111/jace.14482
    [74]
    Chen J H, Chen H Y, Mi W J, et al. Synthesis of CaO·2MgO·8Al2O3(CM2A8) and its slag resistance mechanism. J Eur Ceram Soc, 2017, 37(4): 1799 doi: 10.1016/j.jeurceramsoc.2016.11.018
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (1293) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164