Citation: | WU Zong-he, QI Zi-chen, XU Peng-peng, ZHAO Yun-peng, XIAO Hong. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets[J]. Chinese Journal of Engineering, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002 |
[1] |
Dai J, Huang J, Li Z G, et al. Effects of heat input on microstructure and mechanical properties of laser-welded Mg-rare earth alloy. J Mater Eng Perform, 2013, 22(1): 64 doi: 10.1007/s11665-012-0173-8
|
[2] |
陳振華. 變形鎂合金. 北京: 化學工業出版社, 2005
Chen Z H. Deformed Magnesium Alloy. Beijing: Chemical Industry Press, 2005
|
[3] |
Kojima Y, Kamado S. Fundamental magnesium researches in Japan. Mater Sci Forum, 2005, 488-489: 9 doi: 10.4028/www.scientific.net/MSF.488-489.9
|
[4] |
Baghni I M, Wu Y S, Li J Q, et al. Mechanical properties and potential applications of magnesium alloys. Trans Nonferrous Met Soc China, 2003, 13(6): 1253
|
[5] |
Schl?gl C M, Planitzer C, Harrer O, et al. Production and formability of roll bounded magnesium (AZ31)-aluminium (1050)-composites. BHM-Berg und Huttenmannische Monatshefte, 2011, 156(7): 249 doi: 10.1007/s00501-011-0003-6
|
[6] |
Ikpi M E, Dong J H, Ke W. Effect of cadmium addition on the galvanic corrosion of AM60 magnesium alloy in 0.1 M sodium chloride solution. Solid State Phenomena, 2015, 227: 71 doi: 10.4028/www.scientific.net/SSP.227.71
|
[7] |
Fang D Q, Ma N, Cai K L, et al. Age hardening behaviors, mechanical and corrosion properties of deformed Mg–Mn–Sn sheets by pre-rolled treatment. Mater Des, 2014, 54: 72 doi: 10.1016/j.matdes.2013.08.028
|
[8] |
Hütsch L L, Hütsch J, Herzberg K, et al. Increased room temperature formability of Mg AZ31 by high speed friction stir processing. Mater Des, 2014, 54: 980 doi: 10.1016/j.matdes.2013.08.108
|
[9] |
Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros Sci, 2011, 53(5): 1960 doi: 10.1016/j.corsci.2011.02.015
|
[10] |
Yan Y B, Zhang Z W, Shen W, et al. Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Mater Sci Eng A, 2010, 527(9): 2241 doi: 10.1016/j.msea.2009.12.007
|
[11] |
Zhang T T, Wang W X, Zhou J, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate. Acta Metall Sinica (English Lett)
|
[12] |
張晶, 池成忠, 崔曉磊, 等. 熱壓制備5052/AZ31B/5052三層復合板材的微觀組織與力學性能. 鍛壓技術, 2018, 43(12):136
Zhang J, Chi C Z, Cui X L, et al. Microstructure and mechanical properties of 5052/AZ31B/5052 three-layer composite sheet prepared by hot pressing. Forging Stamping Technol, 2018, 43(12): 136
|
[13] |
Jafarian M, Rizi M S, Jafarian M, et al. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding. Mater Sci Eng A, 2016, 666: 372 doi: 10.1016/j.msea.2016.04.011
|
[14] |
Luo C Z, Liang W, Li X R, et al. Study on interface characteristics of Al/Mg/Al composite plates fabricated by two-pass hot rolling. Mater Sci Forum, 2013, 747: 346
|
[15] |
張建軍. Al/Mg/Al熱軋復合板的制備及其微觀組織和力學性能研究[學位論文]. 太原: 太原理工大學, 2016
Zhang J J. Preparation of Al/Mg/Al Laminated Composite Fabricated by Hot Rolled and Investigation of Microstructure and Mechanical Properties[Dissertation]. Taiyuan: Taiyuan University of Technology, 2016
|
[16] |
Zhang X P, Tan M J, Yang T H, et al. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. Bull Mater Sci, 2011, 34(4): 805 doi: 10.1007/s12034-011-0198-x
|
[17] |
Zhang X P, Yang T H, Liu J Q, et al. Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling. J Mater Sci, 2010, 45(13): 3457 doi: 10.1007/s10853-010-4373-z
|
[18] |
Chen Z J, Zeng Z, Huang G J, et al. Research on the Al/Mg/Al three-layer clad sheet fabricated by hot roll bonding technology. Rare Met Mater Eng, 2011, 40(Suppl 3): 136
|
[19] |
Liu C Y, Wang Q, Jia Y Z, et al. Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding. Mater Sci Eng A, 2012, 556: 1 doi: 10.1016/j.msea.2012.06.046
|
[20] |
楊續躍, 張之嶺, 張雷, 等. 應變速率對AZ61鎂合金動態再結晶行為的影響. 中國有色金屬學報, 2011, 21(8):1801 doi: 10.1016/S1003-6326(11)60934-5
Yang X Y, Zhang Z L, Zhang L, et al. Influence of strain rate on dynamic recrystallization behavior of AZ61 magnesium alloy. Trans Nonferrous Met Soc China, 2011, 21(8): 1801 doi: 10.1016/S1003-6326(11)60934-5
|
[21] |
Maksoud I A, Ahmed H, R?del J. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. Mater Sci Eng A, 2009, 504(1-2): 40 doi: 10.1016/j.msea.2008.10.033
|
[22] |
Santosh R, Das S K, Das G, et al. Three-dimensional thermomechanical simulation and experimental validation on failure of dissimilar material welds. Metall Mater Trans A, 2016, 47(7): 3511 doi: 10.1007/s11661-016-3476-9
|
[23] |
Duan X J, Sheppard T. Simulation and control of microstructure evolution during hot extrusion of hard aluminium alloys. Mater Sci Eng A, 2003, 351(1-2): 282 doi: 10.1016/S0921-5093(02)00840-7
|
[24] |
Sauvage X, Dinda G P, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers. Scripta Mater, 2007, 56(3): 181 doi: 10.1016/j.scriptamat.2006.10.021
|
[25] |
Chung C Y, Zhu M, Man C H. Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy. Intermetallics, 2002, 10(9): 865 doi: 10.1016/S0966-9795(02)00088-2
|
[26] |
Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progr Mater Sci, 2000, 45(2): 103 doi: 10.1016/S0079-6425(99)00007-9
|
[27] |
Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Mater, 2005, 53(7): 2127 doi: 10.1016/j.actamat.2005.01.024
|
[28] |
Sato K, Yoshiie T, Satoh Y, et al. Simulation of vacancy migration energy in Cu under high strain. Mater Sci Eng A, 2003, 350(1-2): 220 doi: 10.1016/S0921-5093(02)00692-5
|