Citation: | HUANG Wei, WEI Shi-cheng, LIANG Yi, WANG Bo, HUANG Yu-wei, WANG Yu-jiang, XU Bin-shi. Research progress of core-shell composite absorbing materials[J]. Chinese Journal of Engineering, 2019, 41(5): 547-556. doi: 10.13374/j.issn2095-9389.2019.05.001 |
[1] |
徐劍盛, 周萬城, 羅發, 等. 雷達波隱身技術及雷達吸波材料研究進展. 材料導報, 2014, 28(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409011.htm
Xu J S, Zhou W C, Luo F, et al. Research progress on radar stealth technique and radar absorbing materials. Mater Rev, 2014, 28(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409011.htm
|
[2] |
Liu Z H, Ban G D, Jiang Z Q, et al. Absorbing properties of nickalloy/iron package mica powder composite absorbing materials. J Comput Theor Nanosci, 2017, 14(4): 1794 doi: 10.1166/jctn.2017.6507
|
[3] |
王海濱, 劉樹信, 霍冀川, 等. 無機吸波材料研究進展. 硅酸鹽通報, 2008, 27(4): 754 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200804023.htm
Wang H B, Liu S X, Huo J C, et al. Progress on inorganic wave-absorbing materials. Bull Chin Ceram Soc, 2008, 27(4): 754 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200804023.htm
|
[4] |
胡小賽, 沈勇, 王黎明, 等. 吸波材料研究新進展. 炭素技術, 2016, 35(2): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS201602004.htm
Hu X S, Shen Y, Wang L M, et al. Research progress of novel microwave absorbing materials. Carbon Tech, 2016, 35(2): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS201602004.htm
|
[5] |
Tian C H, Du Y C, Xu P, et al. Constructing uniform core-shell PPy@ PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces, 2015, 7(36): 20090 doi: 10.1021/acsami.5b05259
|
[6] |
Zhou M, Zhang X, Wang L, et al. Enhanced microwave absorption performance of hollow α-MnO2 nanourchins. J Nanosci Nanotechnol, 2013, 13(2): 904 doi: 10.1166/jnn.2013.5958
|
[7] |
Liu Q H, Xu X H, Xia W X, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale, 2015, 7(5): 1736 doi: 10.1039/C4NR05547K
|
[8] |
Yuan K P, Che R C, Cao Q, et al. Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. ACS Appl Mater Interfaces, 2015, 7(9): 5312 doi: 10.1021/am508683p
|
[9] |
You W B, She W, Liu Z W, et al. High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. J Mater Chem C, 2017, 5(24): 6047 doi: 10.1039/C7TC01544E
|
[10] |
Duan W Y, Yin X W, Li Q, et al. A review of absorption properties in silicon-based polymer derived ceramics. J Eur Ceram Soc, 2016, 36(15): 3681 doi: 10.1016/j.jeurceramsoc.2016.02.002
|
[11] |
Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys, 2012, 111(6): 061301 doi: 10.1063/1.3688435
|
[12] |
Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111: 722 doi: 10.1016/j.carbon.2016.10.059
|
[13] |
Zhou C, Geng S, Xu X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon, 2016, 108: 234 doi: 10.1016/j.carbon.2016.07.015
|
[14] |
Song W L, Zhang K L, Chen M J, et al. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon, 2017, 118: 86 doi: 10.1016/j.carbon.2017.03.016
|
[15] |
Chylekt P. Light scattering by small particles in an absorbing medium. J Opt Soc Am, 1977, 67(4): 561 doi: 10.1364/JOSA.67.000561
|
[16] |
Jánossy L. Classical and wave mechanical theory of Rayleigh scattering. Acta Phys Academiae Scientiarum Hungaricae, 1976, 41(1): 41 doi: 10.1007/BF03157429
|
[17] |
Wagner P E. A constant-angle Mie scattering method (CAMS) for investigation of particle formation processes. J Colloid Interface Sci, 1985, 105(2): 456 doi: 10.1016/0021-9797(85)90319-4
|
[18] |
段濤, 楊玉山, 彭同江, 等. 核殼型納米復合材料的研究進展. 材料導報, 2009, 23(2): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200903006.htm
Duan T, Yang Y S, Peng T J, et al. Review of progress in core-shell structural nanocomposite material. Mater Rev, 2009, 23(2): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200903006.htm
|
[19] |
劉冶, 李竹影, 俞翔, 等. 形狀任意的超材料電磁隱身波長變換器的設計. 裝備環境工程, 2016, 13(1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201601019.htm
Liu Y, Li Z Y, Yu X, et al. Design of metamaterial electromagnetic invisible wavelength transformer with arbitrary shape. Equip Environ Eng, 2016, 13(1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201601019.htm
|
[20] |
劉冶, 李竹影, 趙林, 等. 一種無奇異參數橢圓柱形電磁隱身斗篷的設計基礎理論. 裝備環境工程, 2015, 12(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201501002.htm
Liu Y, Li Z Y, Zhao L, et al. A design fundamental theory of elliptic cylindrical invisible cloak with non-singular electromagnetic tensors. Equip Environ Eng, 2015, 12(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201501002.htm
|
[21] |
Xu J, He F, Gai S L, et al. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale, 2014, 6(18): 10887 doi: 10.1039/C4NR02756F
|
[22] |
Tian C H, Du Y C, Cui C S, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci, 2017, 52(11): 6349 doi: 10.1007/s10853-017-0866-3
|
[23] |
Ren F J, Yu H J, Wang L, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv, 2014, 4(28): 14419 doi: 10.1039/c3ra46989a
|
[24] |
Quan B, Liang X H, Ji G B, et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloys Compd, 2017, 728: 1065 doi: 10.1016/j.jallcom.2017.09.082
|
[25] |
She W, Bi H, Wen Z W, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@ α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interfaces, 2016, 8(15): 9782 doi: 10.1021/acsami.6b00978
|
[26] |
Liu X X, Wu Y P, Wu C, et al. Study on permittivity of composites with core-shell particle. Phys B Condens Matter, 2010, 405(8): 2014 doi: 10.1016/j.physb.2010.01.093
|
[27] |
曲兆明, 王慶國, 秦思良, 等. 核殼粒子復合材料的等效磁導率. 材料科學與工藝, 2012, 20(3): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201203008.htm
Qu Z M, Wang Q G, Qin S L, et al. Effective permeability of composites with core-shell particles. Mater Sci Technol, 2012, 20(3): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201203008.htm
|
[28] |
Bergheul S, Otmane F, Azzaz M. Structural and microwave absorption properties of nanostructured Fe-Co alloys. Adv Powder Technol, 2012, 23(5): 580 doi: 10.1016/j.apt.2011.06.004
|
[29] |
Lee C C, Cheng Y Y, Chang H Y, et al. Synthesis and electromagnetic wave absorption property of Ni-Ag alloy nanoparticles. J Alloys Compd, 2009, 480(2): 674 doi: 10.1016/j.jallcom.2009.02.017
|
[30] |
哈日巴拉, 付烏有, 楊海濱, 等. Fe3O4/Ni復合納米顆粒的制備及其微波吸收特性. 復合材料學報, 2008, 25(5): 14 doi: 10.3321/j.issn:1000-3851.2008.05.003
Hari B, Fu W Y, Yang H B, et al. Preparation and properties of Fe3O4/Ni nanoparticles. Acta Mater Compos Sin, 2008, 25(5): 14 doi: 10.3321/j.issn:1000-3851.2008.05.003
|
[31] |
Drmota A, Koselj J, Drofenik M, et al. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. J Magn Magn Mater, 2012, 324(6): 1225 doi: 10.1016/j.jmmm.2011.11.015
|
[32] |
俞梁, 王建江, 許寶才, 等. Co-Zn摻雜的W型鋇鐵氧體空心陶瓷微珠吸波材料的制備與性能研究. 人工晶體學報, 2015, 44(9): 2490 doi: 10.3969/j.issn.1000-985X.2015.09.031
Yu L, Wang J J, Xu B C, et al. Study on the preparation and properties of Co-Zn doped W-type barium ferrite hollow ceramic microsphere absorbing materials. J Synth Cryst, 2015, 44(9): 2490 doi: 10.3969/j.issn.1000-985X.2015.09.031
|
[33] |
Wang G Q, Chang Y F, Wang L F, et al. Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv Powder Technol, 2012, 23(6): 861 doi: 10.1016/j.apt.2011.12.003
|
[34] |
王曉磊, 包秀坤, 關銀燕, 等. C/Co核殼亞微米復合物的吸波性能. 材料研究學報, 2017, 31(4): 241 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201704001.htm
Wang X L, Bao X K, Guan Y Y, et al. Microwave absorption properties of submicro-composites of core-shell C/Co. Chin J Mater Res, 2017, 31(4): 241 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201704001.htm
|
[35] |
Yuan J, Yang H J, Hou Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol, 2013, 237: 309 doi: 10.1016/j.powtec.2012.12.020
|
[36] |
Wang B C, Zhang J L, Wang T, et al. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles. J Alloys Compd, 2013, 567: 21 doi: 10.1016/j.jallcom.2013.03.028
|
[37] |
Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale, 2014, 6(4): 2447 doi: 10.1039/c3nr05238a
|
[38] |
朱云斌, 卿玉長, 賈舒, 等. SiO2包覆羰基鐵的微波吸收性能研究. 材料導報, 2010, 24(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201002006.htm
Zhu Y B, Qing Y C, Jia S, et al. Microwave absorbing properties of SiO2 coated carbonyl iron particles. Mater Rev, 2010, 24(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201002006.htm
|
[39] |
Qiao M T, Lei X F, Ma Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4 @MnO2 composite microspheres. Chem Eng J, 2016, 304: 552 doi: 10.1016/j.cej.2016.06.094
|
[40] |
Liu J W, Che R C, Chen H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214 doi: 10.1002/smll.201102245
|
[41] |
張捷, 劉偉, 張婷, 等. 導電聚合物基復合吸波材料的研究進展. 微納電子技術, 2018(2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201802003.htm
Zhang J, Liu W, Zhang T, et al. Research progress of conductive polymer composites for microwave absorption. Micronanoelectron Technol, 2018(2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201802003.htm
|
[42] |
Wang Y, Wang W, Zhu M F, et al. Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@PANI nanoparticles. RSC Adv, 2017, 7(68): 42891 doi: 10.1039/C7RA08002F
|
[43] |
景紅霞, 李巧玲, 葉云, 等. 羰基鐵-聚苯胺復合吸波材料的制備及性能. 功能高分子學報, 2012, 25(4): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-GNGF201204012.htm
Jing H X, Li Q L, Ye Y, et al. Synthesis and properties of carbonyl iron-polyaniline microwave absorption composites. J Funct Polym, 2012, 25(4): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-GNGF201204012.htm
|
[44] |
Yan L L, Wang X X, Zhao S C, et al. Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl Mater Interfaces, 2017, 9(12): 11116 doi: 10.1021/acsami.6b16864
|
[45] |
王雯, 王成國, 郭宇, 等. 新型碳基復合吸波材料的制備及性能研究. 航空材料學報, 2012, 32(1): 63 doi: 10.3969/j.issn.1005-5053.2012.1.013
Wang W, Wang C G, Guo Y, et al. Preparation and electromagnetic characteristic of novel carbon based composites. J Aeronautical Mater, 2012, 32(1): 63 doi: 10.3969/j.issn.1005-5053.2012.1.013
|
[46] |
Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15): 12997 doi: 10.1021/am502910d
|
[47] |
Wan G P, Yu L, Peng X G, et al. Preparation and microwave absorption properties of uniform TiO2@C core-shell nanocrystals. RSC Adv, 2015, 5(94): 77443 doi: 10.1039/C5RA14344F
|
[48] |
卓絕, 黃昊, 丁昂. 直流電弧法制備SiC@C核殼型納米粒子及吸波性能研究. 兵器材料科學與工程, 2016, 39(6): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201606022.htm
Zhuo J, Huang H, Ding A. Microwave absorbing properties of SiC@C core/shell nanoparticles prepared by arc discharge method. Ordnance Mater Sci Eng, 2016, 39(6): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201606022.htm
|
[49] |
刁金香, 王惠. 乙醇裂解制備碳納米管及其生長機理研究. 硅酸鹽通報, 2018, 37(1): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201801015.htm
Diao J X, Wang H. Synthesis of carbon nanotubes by decomposition of ethanol and its growth mechanism. Bull Chin Ceramic Soc, 2018, 37(1): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201801015.htm
|
[50] |
Zhang S L, Qi Z W, Zhao Y, et al. Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J Alloys Compd, 2017, 694: 309 doi: 10.1016/j.jallcom.2016.09.324
|
[51] |
Wang Y, Zhang W Z, Luo C Y, et al. Fabrication and high-performance microwave absorption of Ni@SnO2@PPy core-shell composite. Synth Met, 2016, 220: 347 doi: 10.1016/j.synthmet.2016.07.005
|
[52] |
Yu M, Liang C Y, Liu M M, et al. Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J Mater Chem C, 2014, 2(35): 7275 doi: 10.1039/C4TC01285B
|
[53] |
Liu J W, Xu J J, Che R C, et al. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem Eur J, 2013, 19(21): 6746 doi: 10.1002/chem.201203557
|
[54] |
Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk-shell Ni@ void@ SnO2 (Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res, 2017, 10(1): 331 doi: 10.1007/s12274-016-1295-3
|
[55] |
Liu J W, Cheng J, Che R C, et al. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J Phys Chem C, 2013, 117(1): 489 doi: 10.1021/jp310898z
|
[56] |
Peng Z, Jiang W, Wang Y P, et al. Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites. J Mater Sci Mater Electron, 2016, 27(2): 1304 doi: 10.1007/s10854-015-3890-6
|