Citation: | WU Zhong-guang, WU Shun-chuan. Probabilistic back analysis method for determining surrounding rock parameters of deep hard rock tunnel[J]. Chinese Journal of Engineering, 2019, 41(1): 78-87. doi: 10.13374/j.issn2095-9389.2019.01.008 |
[1] |
Baecher G B, Christian J T. Reliability and Statistics in Geotechnical Engineering. New York: John Wiley and Sons, Inc, 2003
|
[2] |
Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter? Struct Saf, 2009, 31(2): 105 doi: 10.1016/j.strusafe.2008.06.020
|
[3] |
Langford J C, Diederichs M S. Quantifying uncertainty in Hoek-Brown intact strength envelopes. Int J Rock Mech Min Sci, 2015, 74: 91 doi: 10.1016/j.ijrmms.2014.12.008
|
[4] |
蔡美峰, 何滿潮, 劉東燕. 巖石力學與工程. 2版. 北京: 科學出版社, 2013
Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2013
|
[5] |
Gilbert R B, Tang W H. Model uncertainty in offshore geotechnical reliability// Proceeding of the 27th Offshore Technology Conference. Houston, 1995: 557
|
[6] |
Gilbert R B, Wright S G, Liedtke E. Uncertainty in back analysis of slopes: Kettleman Hills case history. J Geotech Geoenviron Eng, 1998, 124(12): 1167 doi: 10.1061/(ASCE)1090-0241(1998)124:12(1167)
|
[7] |
Zhang L L, Zhang J, Zhang L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation. Comput Geotech, 2010, 37(7-8): 905 doi: 10.1016/j.compgeo.2010.07.009
|
[8] |
Zhang L L, Zuo Z B, Ye G L, et al. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Comput Geotech, 2013, 48: 72 doi: 10.1016/j.compgeo.2012.09.011
|
[9] |
Zhang J, Tang W H, Zhang L M. Efficient probabilistic back-analysis of slope stability model parameters. J Geotech Geoenviron Eng, 2010, 136(1): 99 doi: 10.1061/(ASCE)GT.1943-5606.0000205
|
[10] |
Wang L, Hwang J H, Luo Z, et al. Probabilistic back analysis of slope failure——a case study in Taiwan. Comput Geotech, 2013, 51: 12 doi: 10.1016/j.compgeo.2013.01.008
|
[11] |
Li S J, Zhao H B, Ru Z L, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng Geol, 2016, 203: 178 doi: 10.1016/j.enggeo.2015.11.004
|
[12] |
Miranda T, Dias D, Eclaircy-Caudron S, et al. Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure. Tunnell Undergr Space Technol, 2011, 26(6): 659 doi: 10.1016/j.tust.2011.05.010
|
[13] |
Miro S, K?nig M, Hartmann D, et al. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study. Comput Geotech, 2015, 68: 38 doi: 10.1016/j.compgeo.2015.03.012
|
[14] |
Haas C, Einstein H H. Updating the "Decision Aids for Tunneling". J Constr Eng Manage, 2002, 128(1): 40 doi: 10.1061/(ASCE)0733-9364(2002)128:1(40)
|
[15] |
Miranda T, Correia A G, e Sousa L R. Bayesian methodology for updating geomechanical parameters and uncertainty quantification. Int J Rock Mech Min Sci, 2009, 46(7): 1144 doi: 10.1016/j.ijrmms.2009.03.008
|
[16] |
Zhang J, Tang W H, Zhang L M, et al. Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Comput Geotech, 2012, 43: 26 doi: 10.1016/j.compgeo.2012.02.002
|
[17] |
Peng M, Li X Y, Li D Q, et al. Slope safety evaluation by integrating multi-source monitoring information. Struct Saf, 2014, 49: 65 doi: 10.1016/j.strusafe.2013.08.007
|
[18] |
Feng X D, Jimenez R. Bayesian prediction of elastic modulus of intact rocks using their uniaxial compressive strength. Eng Geol, 2014, 173: 32 doi: 10.1016/j.enggeo.2014.02.005
|
[19] |
Wang Y, Cao Z J. Probabilistic characterization of Young's modulus of soil using equivalent samples. Eng Geol, 2013, 159: 106 doi: 10.1016/j.enggeo.2013.03.017
|
[20] |
Cao Z J, Wang Y, Li D Q. Quantification of prior knowledge in geotechnical site characterization. Eng Geol, 2016, 203: 107 doi: 10.1016/j.enggeo.2015.08.018
|
[21] |
Wang Y, Aladejare A E. Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock. Int J Rock Mech Min Sci, 2016, 85: 10 doi: 10.1016/j.ijrmms.2016.02.010
|
[22] |
Contreras L F, Brown E T, Ruest M. Bayesian data analysis to quantify the uncertainty of intact rock strength. J Rock Mech Geotech Eng, 2018, 10(1): 11 doi: 10.1016/j.jrmge.2017.07.008
|
[23] |
Li D Q, Zheng D, Cao Z J, et al. Response surface methods for slope reliability analysis: Review and comparison. Eng Geol, 2016, 203: 3 doi: 10.1016/j.enggeo.2015.09.003
|
[24] |
Lv Q, Sun H Y, Low B K. Reliability analysis of ground-support interaction in circular tunnels using the response surface method. Int J Rock Mech Min Sci, 2011, 48(8): 1329 doi: 10.1016/j.ijrmms.2011.09.020
|
[25] |
Zhao H B, Ru Z L, Chang X, et al. Reliability analysis of tunnel using least square support vector machine. Tunnell Undergr Space Technol, 2014, 41: 14 doi: 10.1016/j.tust.2013.11.004
|
[26] |
Lv Q, Chan C L, Low B K. Probabilistic evaluation of ground-support interaction for deep rock excavation using artificial neural network and uniform design. Tunnell Undergr Space Technol, 2012, 32: 1 doi: 10.1016/j.tust.2012.04.014
|
[27] |
Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis. Struct Saf, 2004, 26(1): 49 doi: 10.1016/S0167-4730(03)00022-5
|
[28] |
Li X, Li X B, Su Y H. A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment. Struct Saf, 2016, 61: 22 doi: 10.1016/j.strusafe.2016.03.001
|
[29] |
Lv Q, Xiao Z P, Ji J, et al. Moving least squares method for reliability assessment of rock tunnel excavation considering ground-support interaction. Comput Geotech, 2017, 84: 88 doi: 10.1016/j.compgeo.2016.11.019
|
[30] |
Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines. Adv in Neural Inf Process Syst, 1996, 28(7): 779
|
[31] |
Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct Saf, 2004, 26(3): 271 doi: 10.1016/j.strusafe.2003.05.002
|
[32] |
Tuia D, Verrelst J, Alonso L, et al. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett, 2011, 8(4): 804 doi: 10.1109/LGRS.2011.2109934
|
[33] |
Zheng D J, Cheng L, Bao T F, et al. Integrated parameter inversion analysis method of a CFRD based on multi-output support vector machines and the clonal selection algorithm. Comput Geotech, 2013, 47: 68 doi: 10.1016/j.compgeo.2012.07.006
|
[34] |
Li S J, Zhao H B, Ru Z L, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope. Eng Geol, 2016, 203: 178 doi: 10.1016/j.enggeo.2015.11.004
|
[35] |
Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN'95 International Conference on Neural Networks. Perth, 1995: 1942
|
[36] |
馮夏庭, 周輝, 李邵軍, 等. 復雜條件下巖石工程安全性的智能分析評估和時空預測系統. 巖石力學與工程學報, 2008, 27(9): 1741 doi: 10.3321/j.issn:1000-6915.2008.09.002
Feng X T, Zhou H, Li S J, et al. System of intelligent evaluation and prediction in space-time for safety of rock engineering under hazardous environment. Chin J Rock Mech Eng, 2008, 27(9): 1741 doi: 10.3321/j.issn:1000-6915.2008.09.002
|
[37] |
Diederichs M S. The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J, 2007, 44(9): 1082 doi: 10.1139/T07-033
|
[38] |
Hoek E, Carranza-Torres C T, Corkum B, et al. Hoek-Brown failure criterion - 2002 edition//Proceedings of NARMS-Tac Conference. Toronto, 2002: 267
|
[39] |
Perras M A, Diederichs M S. Predicting excavation damage zone depths in brittle rocks. Int J Rock Mech Geotech Eng, 2016, 8(1): 60 doi: 10.1016/j.jrmge.2015.11.004
|
[40] |
Dammyr ?. Prediction of brittle failure for TBM tunnels in anisotropic rock: a case study from Northern Norway. Rock Mech Rock Eng, 2016, 49(6): 2131 doi: 10.1007/s00603-015-0910-z
|
[41] |
Langford J C, Diederichs M S. Reliable support design for excavations in brittle rock using a global response surface method. Rock Mech Rock Eng, 2015, 48(2): 669 doi: 10.1007/s00603-014-0567-z
|
[42] |
Ghazvinian E, Perras M A, Diederichs M S, et al. The effect of anisotropy on crack damage thresholds in brittle rocks//Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium. San Francisco, 2013: 503
|
[43] |
Martin C D, Kaiser P K, McCreath D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J, 1999, 36(1): 136 doi: 10.1139/t98-072
|
[44] |
Griffith A. The theory of rupture//Proceedings of the 1st International Congress on Applied Mechanics. Delft, 1924: 55
|
[45] |
Murrell S A F. A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion//Proceedings of the 5th Rock Mechanics Symposium. Oxford, 1963: 563
|
[46] |
Cai M. Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng, 2010, 43(2): 167 doi: 10.1007/s00603-009-0053-1
|
[47] |
Perras M A, Diederichs M S. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng, 2014, 32(2): 525 doi: 10.1007/s10706-014-9732-0
|
[48] |
Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of state calculations by fast computing machines. J Chem Phys, 1953, 21(6): 1087 doi: 10.1063/1.1699114
|
[49] |
Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97 doi: 10.1093/biomet/57.1.97
|
[50] |
余勝威. MATLAB優化算法案例分析與應用. 北京: 清華大學出版社, 2014
Yu S W. Case Analysis and Application of MATLAB Optimization Algorithm. Beijing: Tsinghua University Press, 2014
|
[51] |
吳成, 張平. 高地應力硬巖洞室開挖破壞區數值模擬方法探討. 水文地質工程地質, 2012, 39(6): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206010.htm
Wu C, Zhang P. Analysis of numerical simulation methods for excavation failure zone of deep underground opening in hard rocks with high geostress. Hydrogeol Eng Geol, 2012, 39(6): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206010.htm
|
[52] |
Li X, Li X B, Su Y H. A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment. Struct Saf, 2016, 61: 22 doi: 10.1016/j.strusafe.2016.03.001
|