<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 40 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
SONG Yan-qi, LI Xiang-shang, LI Ming. Ⅰ-Ⅱ mixed-mode fatigue crack propagation of A7085 aluminum alloy and its numerical simulation[J]. Chinese Journal of Engineering, 2018, 40(12): 1510-1517. doi: 10.13374/j.issn2095-9389.2018.12.009
Citation: SONG Yan-qi, LI Xiang-shang, LI Ming. Ⅰ-Ⅱ mixed-mode fatigue crack propagation of A7085 aluminum alloy and its numerical simulation[J]. Chinese Journal of Engineering, 2018, 40(12): 1510-1517. doi: 10.13374/j.issn2095-9389.2018.12.009

Ⅰ-Ⅱ mixed-mode fatigue crack propagation of A7085 aluminum alloy and its numerical simulation

doi: 10.13374/j.issn2095-9389.2018.12.009
  • Received Date: 2018-03-22
  • Compared with other types of aluminum alloys, A7085 aluminum alloy has a series of excellent properties such as high strength, high toughness, and high fatigue resistance. These advantages meet the requirements of aircraft performance; thus, A7085 aluminum alloy is widely used for fabricating aircraft components. The shell cracks in aeronautical structures are often mixed-mode cracks, i. e., comprising open type and sliding type, and they are also known as the Ⅰ-Ⅱ compound crack. It has been found that fatigue fracture is the main reason for the failure of most specimens. At present, most studies on fatigue crack are focused on mode Ⅰ crack, but the load on the specimen is usually not a single pure type Ⅰ, Ⅱ, or Ⅲ mode. It is usually a combination of these three kinds of loads. When the crack is subjected to Ⅰ-Ⅱ mixed-mode loads, its crack growth rate and crack growth path are affected by the loading conditions. To investigate the mechanism of Ⅰ-Ⅱ mixed-mode fatigue crack growth of A7085 under different loading angles, mixed-mode (Ⅰ-Ⅱ) fatigue crack growth tests were performed on compact tension shear (CTS) specimens using a servo-hydraulic fatigue testing machine. The stress intensity factor of the crack tip was calculated by finite element analysis. Furthermore, C and m in the Paris law were calculated using seven-point incremental polynomial methods. The results show that when under different loading angles, cracks will extend along the vertical direction of the external load. Moreover, the path seems to be a straight line. The results of experiments agree with the maximum tensile stress theory. Once the crack expands, type Ⅱ stress intensity factor K basical-ly remains at 0, while type Ⅰ stress intensity factor K increases gradually. The stress intensity factor amplitude is almost equal to K Ⅰ, and crack propagation is mainly controlled by K. The result is helpful to understand the mechanism of the Ⅰ-Ⅱ fatigue crack propagation.

     

  • loading
  • [3]
    Chen S Y, Chen K H, Dong P X, et al. Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy. Trans Nonferrous Met Soc China, 2014, 24(7):2320
    [6]
    Pirondi A, Nicoletto G. Mixed mode Ⅰ/Ⅱ fatigue crack growth in adhesive joints. Eng Fract Mech, 2006, 73(16):2557
    [9]
    Pirondi A, Moroni F. Simulation of mixed-mode Ⅰ/Ⅱ fatigue crack propagation in adhesive joints with a modified cohesive zone model. J Adhes Sci Technol, 2011, 25(18):2483
    [13]
    Richard H A. A new compact shear specimen. Int J Fract, 1981, 17(5):R105
    [14]
    Peixoto D F C, de Castro P M S T. Mixed mode fatigue crack propagation in a railway wheel steel. Procedia Struct Integr, 2016, 1:150
    [15]
    Tanaka K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Eng Fract Mech, 1974, 6(3):493
    [16]
    Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng, 1963, 85(4):528
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (774) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164