<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 30 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
LI Qing, FENG Jinling, LIU Yanling, ZHOU Zhou, YIN Yixin. Application of adaptive genetic algorithm to optimum path planning of mobile robots[J]. Chinese Journal of Engineering, 2008, 30(3): 316-323. doi: 10.13374/j.issn1001-053x.2008.03.019
Citation: LI Qing, FENG Jinling, LIU Yanling, ZHOU Zhou, YIN Yixin. Application of adaptive genetic algorithm to optimum path planning of mobile robots[J]. Chinese Journal of Engineering, 2008, 30(3): 316-323. doi: 10.13374/j.issn1001-053x.2008.03.019

Application of adaptive genetic algorithm to optimum path planning of mobile robots

doi: 10.13374/j.issn1001-053x.2008.03.019
  • Received Date: 2006-12-04
  • Rev Recd Date: 2007-03-17
  • Available Online: 2021-08-06
  • An adaptive genetic algorithm for the optimum path planning problem of a mobile robot was proposed. The research project was carried out from four aspects:a geometry obstacle avoiding algorithm was developed to generate initial population; the crossover, mutation, improving and deletion operators which base on heuristic knowledge were designed for path planning; a new kind of fuzzy logic control algorithm was adopted to self-adaptively adjust the probabilities of crossover and mutation; simulation studies in both off-line and on-line environments were implemented. The simulation results show that the adaptive genetic algorithm has advantages such as rapid search speed, high search quality and strong self-adaptability. It is a new approach for solving the optimum path planning problem of a mobile robot.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (151) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164