<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 29 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHAO Yue, MU Zhichun, DONG Jie, FU Dongmei, HE Wei. A credit risk evaluation model for telecom clients based on query-by-committee method of active learning[J]. Chinese Journal of Engineering, 2007, 29(4): 442-446. doi: 10.13374/j.issn1001-053x.2007.04.016
Citation: ZHAO Yue, MU Zhichun, DONG Jie, FU Dongmei, HE Wei. A credit risk evaluation model for telecom clients based on query-by-committee method of active learning[J]. Chinese Journal of Engineering, 2007, 29(4): 442-446. doi: 10.13374/j.issn1001-053x.2007.04.016

A credit risk evaluation model for telecom clients based on query-by-committee method of active learning

doi: 10.13374/j.issn1001-053x.2007.04.016
  • Received Date: 2005-12-20
  • Rev Recd Date: 2006-04-19
  • Available Online: 2021-08-16
  • Evaluating telecom clients' credit risk rate is classifying their credit risk level. An approach based on active learning was proposed for solving the insufficient labeled data problem in building a credit risk rate classifier. The new QBC (query-by-committee, QBC) method of active learning was presented to improve the classifier's accuracy. By applying the actual telecom clients data in the experiment, the results show that the model built by the new algorithm with less labeled training data can reach the same accuracy as passive learning. This can reduce annotation cost for credit evaluation experts.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (153) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164