<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 29 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
JIANG Haiyun, WANG Jigang, WU Shenqing. Adhesive properties of B4C-modified phenol-formaldehyde(PF)resin adhesive for the high-temperature bonding of Si3N4[J]. Chinese Journal of Engineering, 2007, 29(2): 178-181. doi: 10.13374/j.issn1001-053x.2007.02.042
Citation: JIANG Haiyun, WANG Jigang, WU Shenqing. Adhesive properties of B4C-modified phenol-formaldehyde(PF)resin adhesive for the high-temperature bonding of Si3N4[J]. Chinese Journal of Engineering, 2007, 29(2): 178-181. doi: 10.13374/j.issn1001-053x.2007.02.042

Adhesive properties of B4C-modified phenol-formaldehyde(PF)resin adhesive for the high-temperature bonding of Si3N4

doi: 10.13374/j.issn1001-053x.2007.02.042
  • Received Date: 2006-09-29
  • Rev Recd Date: 2006-11-29
  • Available Online: 2021-08-16
  • High-temperature adhesive was prepared using phenol-formaldehyde resin (PF) as matrix and boron carbide (B4C) as modifier, silicon nitride (Si3N4) ceramics were bonded by the adhesive, and the bonded specimens were heat-treated within 300-800℃ subsequently. The adhesive properties of the high-temperature adhesive were tested. The results indicate that the adhesive has outstanding high-temperature bonding properties for Si3N4 at high temperature. The failure of bonded joints treated at 700 and 800℃ were due to the broken of Si3N4 matrix. The micro-morphologies at bonding interfaces were also investigated by SEM. It is shown that complex physical and chemical changes occurred during the heat-treatment process. By means of the modification reaction between B4C and the volatiles of PF resin, the value of carbon residue was prompted effectively; and the formation of fibers and the nanocrystallization of B2O3 benefit the achievement of satisfactory high-temperature bonding properties.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (180) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164