<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 16 Issue 3
Nov.  2021
Turn off MathJax
Article Contents
Li Mingchu, Wang Bingtuan, Xiong Liming. A New Sufficient Condition for A Graph to Contain Three Disjoint 1-Factors[J]. Chinese Journal of Engineering, 1994, 16(3): 289-293. doi: 10.13374/j.issn1001-053x.1994.03.019
Citation: Li Mingchu, Wang Bingtuan, Xiong Liming. A New Sufficient Condition for A Graph to Contain Three Disjoint 1-Factors[J]. Chinese Journal of Engineering, 1994, 16(3): 289-293. doi: 10.13374/j.issn1001-053x.1994.03.019

A New Sufficient Condition for A Graph to Contain Three Disjoint 1-Factors

doi: 10.13374/j.issn1001-053x.1994.03.019
  • Received Date: 1993-01-05
    Available Online: 2021-11-13
  • It was proved by S Win in 1982 that every Ore-type-(1) graph of order 2n has a Hamilton cycle and a 1-factor which are edge-disjoint.In this paper, we obtain the following theorem Every 2-connected Ore-type-(-2) graph G of order 2n(n ≥ 10) has a Hamilton cycle and a 1-factor which are edge-disjoint unless G is one of the graphs in Figure.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (236) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164