<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 13 Issue 2
Oct.  2021
Turn off MathJax
Article Contents
Deng Yongrui, Shen Yun. Phase Interface and Martensitic Transformation[J]. Chinese Journal of Engineering, 1991, 13(2): 134-140. doi: 10.13374/j.issn1001-053x.1991.02.007
Citation: Deng Yongrui, Shen Yun. Phase Interface and Martensitic Transformation[J]. Chinese Journal of Engineering, 1991, 13(2): 134-140. doi: 10.13374/j.issn1001-053x.1991.02.007

Phase Interface and Martensitic Transformation

doi: 10.13374/j.issn1001-053x.1991.02.007
  • Received Date: 1990-10-06
    Available Online: 2021-10-23
  • This paper unifies the phenomenological theory of crystallography and that of kinetics, and builds a new theory based on the phase interface motion for the martensitic transformations. The interface can be described with a characteristic tensor, which is the invariant plane strain. Thus, the motion of this interface will transform the parent phase to martensite,conforming to all regulations of the crystallography such as habit plane, orientation, etc. On the other hand, the interface can be taken as an elastic and plastic layer. The characteristic tensor, functioning as strain, corresponds to certain elastic and plastic energy (work), which is exactly the friction quasi-enthalpy in the friction function during the interface moving. The interface, i.e. the invariant plane, usually is not a rational plane and is consisted of various low index facets. The number of the configuration of the facets consists the configuration entropy of the interface, which is exactly the friction quasi-entropy in the friction function. Thus, the motion of the interface will show all the kinetic behaviors such as reversibility and hysteresis during the marten-sitic transformations.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (207) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164