<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

復合結構碳纖維防彈板的防彈性能仿真

秦溶蔓 朱波 喬琨 王東哲 孫娜 袁曉敏

秦溶蔓, 朱波, 喬琨, 王東哲, 孫娜, 袁曉敏. 復合結構碳纖維防彈板的防彈性能仿真[J]. 工程科學學報, 2021, 43(10): 1346-1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001
引用本文: 秦溶蔓, 朱波, 喬琨, 王東哲, 孫娜, 袁曉敏. 復合結構碳纖維防彈板的防彈性能仿真[J]. 工程科學學報, 2021, 43(10): 1346-1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001
QIN Rong-man, ZHU Bo, QIAO Kun, WANG Dong-zhe, SUN Na, YUAN Xiao-min. Simulation study of the protective performance of composite structure carbon fiber bulletproof board[J]. Chinese Journal of Engineering, 2021, 43(10): 1346-1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001
Citation: QIN Rong-man, ZHU Bo, QIAO Kun, WANG Dong-zhe, SUN Na, YUAN Xiao-min. Simulation study of the protective performance of composite structure carbon fiber bulletproof board[J]. Chinese Journal of Engineering, 2021, 43(10): 1346-1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001

復合結構碳纖維防彈板的防彈性能仿真

doi: 10.13374/j.issn2095-9389.2021.04.21.001
基金項目: 國家重點研發計劃資助項目(2016YFC0301402);山東省重點研發計劃資助項目(2019JZZY010307)
詳細信息
    通訊作者:

    E-mail: 82107918@qq.com

  • 中圖分類號: TJ02

Simulation study of the protective performance of composite structure carbon fiber bulletproof board

More Information
  • 摘要: 針對纖維/基體間的界面脫黏決定能量吸收這一核心問題,采用一系列標準黏結力參數調整復合板界面黏合力,并通過層間黏性行為和損傷參數模擬界面分層過程。利用ABAQUS有限元軟件中的Explicit分析模塊建立陶瓷/纖維復合防彈板的高速沖擊損傷分析模型,通過分析彈丸初始速度與剩余速度,研究復合防彈板的各組分結構參數、纖維指標、鋪層設計對靶板及層合板抗侵徹行為的作用規律,并結合馮·米塞斯(Von-Mises)應力云圖和基體損傷云圖,探討復合防彈板的受力與損傷形式。最后,利用彈道沖擊實驗成功驗證了模型的準確性。實驗結果表明:由13 mm厚SiC陶瓷、5 mm厚碳纖維復合材料板和17 mm厚超高分子量聚乙烯纖維(UHMWPE)復合材料背板組成的復合防彈板可有效防御彈丸侵徹,對彈丸動能吸收和彈速衰減作用明顯。

     

  • 圖  1  復合材料防彈板仿真模型示意圖。(a)裝配后截面圖;(b)網格劃分;(c)接觸點放大圖

    Figure  1.  Schematic diagram of simulation model of composite bulletproof plate: (a) assembly sectional view; (b) meshed geometry; (c) exploded view around the point of impact

    圖  2  不同陶瓷厚度下彈丸彈速?時間曲線

    Figure  2.  Projectile velocity of ceramic with different thicknesses

    圖  3  不同黏合力下基體所受拉伸損傷面積。(a)黏合力下調20%;(b)標準黏合力;(c)黏合力上調20%

    Figure  3.  Tensile damage to the matrix under different adhesion forces: (a) 20% decrease in adhesion; (b) standard adhesion; (c) 20% increase in adhesion

    圖  4  不同黏合力下彈速隨時間變化曲線

    Figure  4.  Projectile velocity with different adhesive strengths

    圖  5  彈丸沖擊使用不同碳纖維材料防彈板時彈丸動能隨時間變化曲線

    Figure  5.  Variation of the kinetic energy of bulletproof plates with different carbon fiber materials impacted by projectiles

    圖  6  纖維鋪層角度。(a)纖維[0°/90°/0°/90°]鋪層;(b)纖維[45°/?45°/45°/?45°]鋪層

    Figure  6.  Ply angle of composite laminates: (a) [0°/90°/0°/90°]; (b) [45°/?45°/45°/?45°]

    圖  7  不同纖維鋪層角度下彈丸動能隨時間變化曲線

    Figure  7.  Variation of the kinetic energy of composite laminates with different ply angles

    圖  8  不同鋪層角度纖維板所受Von-Mises應力圖。(a)0°鋪層;(b)90°鋪層;(c)?45°鋪層;(d)45°鋪層

    Figure  8.  Von-Mises stress of fiberboard with different ply angles: (a) 0° ply; (b) 90° ply; (c) ?45° ply; (d) 45° ply

    圖  9  不同CFRP層厚度條件下的(a)層合板內能以及(b)彈丸剩余速度隨時間變化曲線

    Figure  9.  Variations of the (a) internal energy of laminate and (b) projectile residual velocity of CFRP plate with different thicknesses

    圖  10  不同UHMWPE層合板厚度下彈速隨時間變化曲線

    Figure  10.  Projectile velocity of UHMWPE laminate with different thicknesses

    圖  11  裝配有不同厚度UHMWPE層合板的復合防彈板的沖擊結果。(a)UHMWPE層合板厚度為16 mm;(b)UHMWPE層合板厚度為17 mm;(c)UHMWPE層合板厚度為17 mm的模擬結果

    Figure  11.  Projectile velocity of UHMWPE laminate with different thicknesses: (a) UHMWPE laminate thickness is 16 mm; (b) UHMWPE laminate thickness is 17 mm; (c) simulation result of 17 mm UHMWPE laminate

    表  1  SiC陶瓷JH-2力學參數[19]

    Table  1.   Mechanical parameters of SiC ceramic in JH-2[19]

    ρ/(kg·m?3)G/GPaABCMNβ$ {\dot{\varepsilon }}_{0} $/s?1
    3215.0193.00.9600.3500.00901.00.6501.01.0
    $ {\sigma }_{\rm{max}}^{\rm{f}} $/GPaHEL/GPa$ {p}_{HEL} $/GPaD1D2K1/GPaK2/GPaK3/GPa
    0.132011.705.1300.4800.480220.0361.00
    下載: 導出CSV

    表  2  不同纖維增強環氧樹脂基體復合材料的彈性參數[13,19-20]

    Table  2.   Elastic parameters of different fiber-reinforced epoxy composites[13,19-20]

    Fiber typeE11/GPaE22/GPaE33/GPav12v13v23G12/GPaG13/GPaG23/GPa
    UHMWPE fiber[13]153.011.3011.300.300.300.406.06.03.60
    T700SC carbon fiber[19]141.011.4011.400.2800.2800.407.107.103.80
    下載: 導出CSV

    表  3  不同纖維增強環氧樹脂基體復合材料的強度參數[13,19-20]

    Table  3.   Strength parameters of different fiber-reinforced epoxy composites[13, 19-20]

    Fiber typeXT/MPaXC/MPaYT/MPaYC/MPaST/MPaSC/MPa
    UHMWPE fiber[13]2357.01580.0130.0650.0340.0180.0
    T700SC carbon fiber[19]2500.01250.060.0186.085.085.0
    下載: 導出CSV

    表  4  黏合力參數[21]

    Table  4.   Parameters of the cohesive layers[21]

    ModeNormalised elastic modulus/ (GPa·mm?1)Inter-laminar strength /MPaInter-laminar fracture toughness/ (kJ·m?2)
    Mode I1373.3493.3493.3
    Mode II62.392.392.3
    Mode III0.280.790.79
    下載: 導出CSV

    表  5  不同種類碳纖維性能參數

    Table  5.   Performance parameters of carbon fiber

    DesignationTensile Strength/
    MPa
    Tensile Modulus/
    GPa
    Density /
    (g·cm?3)
    Elongation/
    %
    T700SC49002301.82.1
    M40JB44003771.751.2
    M60JB38205881.930.7
    下載: 導出CSV

    表  6  17 mm UHMWPE層合板與仿真模擬云圖的背板背凸形變量

    Table  6.   Backplate convex variables of 17 mm UHMWPE laminate and simulated cloud image

    Data typeLaminate 1 of 17 mm UHMWPELaminate 2 of 17 mm UHMWPESimulation cloud image
    Height of convex deformation/mm21.221.421.5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen L, Xu Z W, Li J L, et al. Structure and bullet-proof mechanism of ballistic composites. J Mater Eng, 2010, 38(11): 94 doi: 10.3969/j.issn.1001-4381.2010.11.022

    陳磊, 徐志偉, 李嘉祿, 等. 防彈復合材料結構及其防彈機理. 材料工程, 2010, 38(11):94 doi: 10.3969/j.issn.1001-4381.2010.11.022
    [2] Gu B F, Gong L H, Xu G Y. Ballistic resistance mechanism and performance of UHMWPE composites. Fiber Compos, 2006, 23(1): 20 doi: 10.3969/j.issn.1003-6423.2006.01.007

    顧冰芳, 龔烈航, 徐國躍. UHMWPE纖維復合材料防彈機理和性能. 纖維復合材料, 2006, 23(1):20 doi: 10.3969/j.issn.1003-6423.2006.01.007
    [3] Kurzawa A, Pyka D, Jamroziak K, et al. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles. Compos Struct, 2018, 201: 834 doi: 10.1016/j.compstruct.2018.06.099
    [4] Li C, Liu J C. Development and application of advanced composite armor technology. New Chem Mater, 2004, 32(6): 46 doi: 10.3969/j.issn.1006-3536.2004.06.015

    李超, 劉建超. 復合材料裝甲技術的發展及應用. 化工新型材料, 2004, 32(6):46 doi: 10.3969/j.issn.1006-3536.2004.06.015
    [5] Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceram Int, 2010, 36(7): 2103 doi: 10.1016/j.ceramint.2010.05.021
    [6] Zhou Z S, Wu G H, Jiang L T, et al. Analysis of morphology and microstructure of B4C/2024Al composites after 7.62 mm ballistic impact. Mater Des, 2014, 63: 658
    [7] Karamis M B, Tasdemirci A, Nair F. Failure and tribological behaviour of the AA5083 and AA6063 composites reinforced by SiC particles under ballistic impact. Compos A:Appl Sci Manuf, 2003, 34(3): 217 doi: 10.1016/S1359-835X(03)00024-1
    [8] Hou H L, Zhu X, Kan Y L. The advance of ballistic performance of light ceramic composite armour under the impact of projectile. Acta Armamentarii, 2008, 29(2): 208 doi: 10.3321/j.issn:1000-1093.2008.02.017

    侯海量, 朱錫, 闞于龍. 輕型陶瓷復合裝甲結構抗彈性能研究進展. 兵工學報, 2008, 29(2):208 doi: 10.3321/j.issn:1000-1093.2008.02.017
    [9] Li J J, Zhang M A. Anti-bullet carbon fiber reinforced plastics. Fiber Reinf Plast, 2004(5): 9

    李家駒, 張茂安. 防彈碳纖維復合材料. 玻璃鋼/復合材料, 2004(5):9
    [10] Zhang X Q, Yao X H, Yang G T, et al. Numerical simulation of penetration of composite ceramic/metal armours. J South China Univ Technol Nat Sci, 2005, 33(4): 69

    張曉晴, 姚小虎, 楊桂通, 等. 陶瓷/金屬復合靶板侵徹問題的數值模擬. 華南理工大學學報(自然科學版), 2005, 33(4):69
    [11] Zhang B, Nian X Z, Jin F N, et al. Failure analyses of flexible Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion. Compos Struct, 2018, 184: 759 doi: 10.1016/j.compstruct.2017.10.037
    [12] Schwab M, Todt M, Tauchner J, et al. Modeling, simulation, and experiments of high velocity impact on laminated composites. Compos Struct, 2018, 205: 42 doi: 10.1016/j.compstruct.2018.08.047
    [13] Liu W L, Chen Z H, Chen Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des, 2015, 87: 421 doi: 10.1016/j.matdes.2015.08.024
    [14] Tepeduzu B, Karakuzu R. Ballistic performance of ceramic/composite structures. Ceram Int, 2019, 45(2): 1651 doi: 10.1016/j.ceramint.2018.10.042
    [15] Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys, 1988, 64(8): 3901 doi: 10.1063/1.341344
    [16] Holmquist T J, Johnson G R. Modeling prestressed ceramic and its effect on ballistic performance. Int J Impact Eng, 2005, 31(2): 113 doi: 10.1016/j.ijimpeng.2003.11.002
    [17] Zhou Q, Liu T, He Y M. Study on new anti-trauma material in bulletproof armour. China Pers Prot Equip, 2019(1): 22

    周慶, 劉婷, 何業茂. 防彈裝甲中新型抗凹陷材料的研究. 中國個體防護裝備, 2019(1):22
    [18] Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials // AIP Conference Proceedings. Colorado, 1994: 981
    [19] Sharma A, Mishra R, Jain S, et al. Deformation behavior of single and multi-layered materials under impact loading. Thin Walled Struct, 2018, 126: 193 doi: 10.1016/j.tws.2017.08.021
    [20] Wang L, Zheng C X, Luo H Y, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos Struct, 2015, 134: 475 doi: 10.1016/j.compstruct.2015.08.107
    [21] Cheeseman B A, Bogetti T A. Ballistic impact into fabric and compliant composite laminates. Compos Struct, 2003, 61(1-2): 161 doi: 10.1016/S0263-8223(03)00029-1
    [22] Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct, 2012, 94(9): 2902 doi: 10.1016/j.compstruct.2012.03.039
    [23] Sun X C, Li Y Q, Wu Z, et al. Study on bulletproof property of STF-flexible composite. J Zhejiang Sci Tech Univ, 2014, 31(3): 127

    孫西超, 李艷清, 伍仲, 等. STF?柔性復合材料的防彈性能研究. 浙江理工大學學報, 2014, 31(3):127
    [24] Mohagheghian I, Wang Y, Zhou J, et al. Deformation and damage mechanisms of laminated glass windows subjected to high velocity soft impact. Int J Solids Struct, 2017, 109: 46 doi: 10.1016/j.ijsolstr.2017.01.006
    [25] Palomar M, Lozano-Mínguez E, Rodríguez-Millán M, et al. Relevant factors in the design of composite ballistic helmets. Compos Struct, 2018, 201: 49 doi: 10.1016/j.compstruct.2018.05.076
    [26] Yue X Y, Li Z N, Guo G Y, et al. Preparation and ballistic resistance of B4C-Al foam composites with a bilayer structure. Chin J Eng, 2014, 36(8): 1082

    岳新艷, 李振楠, 郭冠宇, 等. 碳化硼?泡沫鋁雙層復合材料的制備及其防彈性能. 工程科學學報, 2014, 36(8):1082
  • 加載中
圖(11) / 表(6)
計量
  • 文章訪問數:  4404
  • HTML全文瀏覽量:  411
  • PDF下載量:  111
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-21
  • 網絡出版日期:  2021-05-28
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回