<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

滲流作用下風化殼淋積型稀土礦細觀孔隙結構演化特征

陳勛 尹升華 嚴榮富 王雷鳴

陳勛, 尹升華, 嚴榮富, 王雷鳴. 滲流作用下風化殼淋積型稀土礦細觀孔隙結構演化特征[J]. 工程科學學報, 2021, 43(10): 1283-1294. doi: 10.13374/j.issn2095-9389.2021.02.24.003
引用本文: 陳勛, 尹升華, 嚴榮富, 王雷鳴. 滲流作用下風化殼淋積型稀土礦細觀孔隙結構演化特征[J]. 工程科學學報, 2021, 43(10): 1283-1294. doi: 10.13374/j.issn2095-9389.2021.02.24.003
CHEN Xun, YIN Sheng-hua, YAN Rong-fu, WANG Lei-ming. Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage[J]. Chinese Journal of Engineering, 2021, 43(10): 1283-1294. doi: 10.13374/j.issn2095-9389.2021.02.24.003
Citation: CHEN Xun, YIN Sheng-hua, YAN Rong-fu, WANG Lei-ming. Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage[J]. Chinese Journal of Engineering, 2021, 43(10): 1283-1294. doi: 10.13374/j.issn2095-9389.2021.02.24.003

滲流作用下風化殼淋積型稀土礦細觀孔隙結構演化特征

doi: 10.13374/j.issn2095-9389.2021.02.24.003
基金項目: 國家自然科學基金重點資助項目(51734001,52034001);中央高校基本科研業務費專項資金資助項目(FRF-TP-18-003C1);國家科技部重點領域創新團隊資助項目(2018RA4003)
詳細信息
    通訊作者:

    E-mail: 357664177@qq.com

  • 中圖分類號: TD865

Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage

More Information
  • 摘要: 為研究風化殼淋積型稀土礦浸出過程中溶液滲流作用對孔隙結構的影響,以去離子水為溶浸液開展浸礦實驗。對浸出前后礦樣進行顯微CT掃描,獲取了試樣內部結構圖像,利用閾值分割算法得到了浸出前后稀土礦樣的孔隙結構圖像。進而,研究了溶液滲流作用下試樣孔隙結構的變化特征,分析了滲流作用對試樣孔隙率、孔隙體積、孔隙長度、孔隙寬度和孔隙方位角等參數的影響。結果表明:稀土礦孔隙形狀和尺寸在滲流作用下發生顯著變化,且在粗細顆粒接觸區最為明顯;溶液滲流作用使得稀土礦孔隙率增大,孔隙總數量減少,孔隙總體積增大。滲流作用下礦樣中小孔隙數量減少,大孔隙數量增多,各尺寸區間的孔隙數量變化率隨孔隙尺寸的增大呈現先增大后減小的趨勢。溶液滲流作用下孔隙長寬比分布更加集中,孔隙方位角在各角度區間的分布更加均勻,孔隙各向異性增強。

     

  • 圖  1  稀土礦樣粒級組成

    Figure  1.  Particle size distribution of the rare earth ore sample

    圖  2  浸出實驗裝置示意圖

    Figure  2.  Schematic diagram of the leaching experimental device

    圖  3  試樣內部結構圖像。(a)浸出前;(b)浸出后

    Figure  3.  Internal structure image of the sample: (a) before leaching; (b) after leaching

    圖  4  預處理后試樣內部結構圖像。(a)浸出前;(b)浸出后

    Figure  4.  Internal structure image of the sample after preprocessing: (a) before leaching; (b) after leaching

    圖  5  浸出前后孔隙三維圖像。(a)浸出前;(b)浸出后

    Figure  5.  3D images of the pore structure before and after leaching: (a) before leaching; (b) after leaching

    圖  6  試樣內部結構二維圖像。(a)浸出前;(b)浸出后

    Figure  6.  2D images of the internal structure of the sample: (a) before leaching; (b) after leaching

    圖  7  試樣三維獨立孔隙圖像。(a)浸出前;(b)浸出后

    Figure  7.  Images of 3D separated pores of the sample: (a) before leaching; (b) after leaching

    圖  8  試樣二維獨立孔隙圖像。(a)浸出前;(b)浸出后

    Figure  8.  Images of the 2D separated pores of the sample: (a) before leaching; (b) after leaching

    圖  9  浸出前后孔隙率變化特征。(a)分區示意圖;(b)不同區域孔隙率;(c)試樣不同高度各區域孔隙率增加率

    Figure  9.  Porosity variation characteristics of the sample before and after leaching: (a) diagram of regional division; (b) porosity of different regions of the sample; (c) porosity increase rate of different regions at different heights of the sample

    圖  10  浸出前后面試樣的2D孔隙率分布特征

    Figure  10.  Distribution characteristics of the 2D porosity of the sample before and after leaching

    圖  11  浸出前后孔隙體積分布特征

    Figure  11.  Frequency distribution of pore volumes

    圖  12  滲流前后不同體積孔隙數量變化特征

    Figure  12.  Variation characteristics of the number of pores with different volume sizes

    圖  13  浸出前后孔隙長度和寬度分布特征。(a)孔隙長度;(b)孔隙寬度

    Figure  13.  Frequency distribution of the pore length and width: (a) pore length; (b) pore width

    圖  14  浸出前后不同長度和寬度孔隙數量變化特征。(a)孔隙長度;(b)孔隙寬度

    Figure  14.  Variation characteristics of the number of pores with different lengths or widths: (a) pores with different lengths; (b) pores with different widths

    圖  15  浸出前后孔隙長寬比分布特征

    Figure  15.  Frequency distribution of the pore aspect ratio

    圖  16  浸出前后二維孔隙面積分布特征

    Figure  16.  Frequency distribution of the 2D pore area

    圖  17  不同面積孔隙數量變化特征

    Figure  17.  Variation characteristics of the number of pores with different areas

    圖  18  浸出前后孔隙方位角分布特征。(a)浸出前;(b)浸出后

    Figure  18.  Frequency distribution of the azimuthal angle θ: (a) before leaching; (b) after leaching

    圖  19  浸出前后孔隙極角分布特征。(a)浸出前;(b)浸出后

    Figure  19.  Frequency distribution of the polar angle: (a) before leaching; (b) after leaching

    表  1  浸出前后不同體積孔隙數量統計結果

    Table  1.   Statistical result of the number of pores with different volume sizes

    Pore volume/mm310?6?10?510?5?10?410?4?10?310?3?10?210?2?10?110?1?100100?101101?103Total
    The number of pores before leaching30187121818932261720814019862263946
    The number of pores after leaching71554276270764314374260353182156751
    The change in the number of pores?23032?79056?22462142292859255120?107195
    下載: 導出CSV

    表  2  浸出前后不同長寬比孔隙數量統計結果

    Table  2.   Statistical result of the number of pores with different aspect ratios

    Aspect ratio11?22?33?44?55?66?77?88?99?10
    The number of pores before leaching141711635227807775515456511301
    The number of pores after leaching3123104309444094543327353110
    The change in the number of pores?11048?59213?33668?3008?218?30?8?21?1
    Rate of change in the number of pores/%?77.96?36.21?43.12?39.84?40.00?46.15?72.73?66.67?100
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Goodenough K M, Wall F, Merriman D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat Resour Res, 2018, 27(2): 201 doi: 10.1007/s11053-017-9336-5
    [2] Nie W R, Zhang R, He Z Y, et al. Research progress on leaching technology and theory of weathered crust elution-deposited rare earth ore. Hydrometallurgy, 2020, 193: 105295 doi: 10.1016/j.hydromet.2020.105295
    [3] Tang J, Qiao J Y, Xue Q, et al. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA. Chemosphere, 2018, 199: 160 doi: 10.1016/j.chemosphere.2018.01.170
    [4] Huang X W, Long Z Q, Li H W, et al. Development of rare earth hydrometallurgy technology in China. J Rare Earths, 2005, 23(1): 1
    [5] Tian J, Yin J Q, Chen K H, et al. Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore. Hydrometallurgy, 2010, 103(1-4): 211 doi: 10.1016/j.hydromet.2010.04.003
    [6] Xiao Y F, Huang L, Long Z Q, et al. Adsorption ability of rare earth elements on clay minerals and its practical performance. J Rare Earths, 2016, 34(5): 543 doi: 10.1016/S1002-0721(16)60060-1
    [7] He Z Y, Zhang Z Y, Chi R A, et al. Leaching hydrodynamics of weathered elution-deposited rare earth ore with ammonium salts solution. J Rare Earths, 2017, 35(8): 824 doi: 10.1016/S1002-0721(17)60982-7
    [8] Zhou F, Liu Q, Feng J, et al. Role of initial moisture content on the leaching process of weathered crust elution-deposited rare earth ores. Sep Purif Technol, 2019, 217: 24 doi: 10.1016/j.seppur.2019.02.010
    [9] Yin S H, Chen X, Liu C, et al. Effects of ore size distribution on the pore structure characteristics of packed ore beds. Chin J Eng, 2020, 42(8): 972

    尹升華, 陳勛, 劉超, 等. 礦石顆粒級配對堆浸體系三維孔隙結構的影響. 工程科學學報, 2020, 42(8):972
    [10] Chi R A, Liu X M. Prospect and development of weathered crust elution-deposited rare earth ore. J Chin Soc Rare Earths, 2019, 37(2): 129

    池汝安, 劉雪梅. 風化殼淋積型稀土礦開發的現狀及展望. 中國稀土學報, 2019, 37(2):129
    [11] Yin S H, Qi Y, Xie F F, et al. Porosity characteristic of leaching weathered crust elution-deposited rare earth before and after leaching. Chin J Nonferrous Met, 2018, 28(10): 2112

    尹升華, 齊炎, 謝芳芳, 等. 風化殼淋積型稀土礦浸出前后孔隙結構特性. 中國有色金屬學報, 2018, 28(10):2112
    [12] Zhao K, Zhuo Y L, Wang X J, et al. Aggregate evolution mechanism during ion-adsorption rare earth ore leaching. Adv Mater Sci Eng, 2018, 2018: 1
    [13] Wang X J, Li Y X, Huang G L, et al. Changes of pore structure in leaching ion-adsorption type rare earth ore. J Chin Soc Rare Earths, 2017, 35(4): 528

    王曉軍, 李永欣, 黃廣黎, 等. 浸礦過程離子型稀土礦孔隙結構演化規律研究. 中國稀土學報, 2017, 35(4):528
    [14] Liu D F, Zhang Z Y, Chi R A. Microscopic seepage mechanism during in situ leaching of weathered crust elution-deposited rare earth ores. Chin Rare Earths, 2020, 41(4): 1

    劉德峰, 張臻悅, 池汝安. 風化殼淋積型稀土礦原地浸出微觀滲流機制. 稀土, 2020, 41(4):1
    [15] Xie F F, Yin S H, Yuan C L, et al. Study on the influence mechanism of leaching solution on pore of ionic rare earth ore. Chin Rare Earths, 2018, 39(6): 48

    謝芳芳, 尹升華, 袁長林, 等. 浸礦液對離子型稀土礦孔隙影響機制研究. 稀土, 2018, 39(6):48
    [16] Zhou L B, Wang X J, Zhuo Y L, et al. Dynamic pore structure evolution of the ion adsorbed rare earth ore during the ion exchange process. Royal Soc Open Sci, 2019, 6(11): 191107 doi: 10.1098/rsos.191107
    [17] Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth Sci Rev, 2013, 123: 1 doi: 10.1016/j.earscirev.2013.04.003
    [18] Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Miner Eng, 2012, 35: 75 doi: 10.1016/j.mineng.2012.03.033
    [19] Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328

    楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328
    [20] Yang Y, Yang Y S, Gao X Y, et al. Microstructure evolution of low-grade chalcopyrite ores in chloride leaching - A synchrotron-based X-ray CT approach combined with a data-constrained modelling (DCM). Hydrometallurgy, 2019, 188: 1 doi: 10.1016/j.hydromet.2019.06.004
    [21] Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
    [22] Chang D S, Zhang L M. Extended internal stability criteria for soils under seepage. Soils Found, 2013, 53(4): 569 doi: 10.1016/j.sandf.2013.06.008
    [23] Zhuo Y L, Wang X J, Cao S R, et al. Study on relationship between pore structure and strength weakening of rare earth ore under seepage. Gold Sci Technol, 2017, 25(5): 101 doi: 10.11872/j.issn.1005-2518.2017.05.101

    卓毓龍, 王曉軍, 曹世榮, 等. 滲流作用下稀土礦孔隙結構與強度弱化關系研究. 黃金科學技術, 2017, 25(5):101 doi: 10.11872/j.issn.1005-2518.2017.05.101
    [24] Liu D F, Zhang Z Y, Chi R A, et al. Experimental study on the influence of particle size on the strength characteristics of weathered crust elution-deposited rare earth ores. Nonferrous Met Eng, 2020, 10(6): 97 doi: 10.3969/j.issn.2095-1744.2020.06.015

    劉德峰, 張臻悅, 池汝安, 等. 粒徑對風化殼淋積型稀土礦強度特性影響的實驗研究. 有色金屬工程, 2020, 10(6):97 doi: 10.3969/j.issn.2095-1744.2020.06.015
    [25] Cao Z X, Han X D, Zhao S H, et al. Experimental study on the effect of moisture content on shear strength of unsaturated sandy soil. J Henan Polytech Univ Nat Sci, 2019, 38(5): 159

    曹志翔, 韓憲東, 趙素華, 等. 含水率對非飽和砂土抗剪強度影響試驗研究. 河南理工大學學報(自然科學版), 2019, 38(5):159
    [26] Kouakou N M, Cuisinier O, Masrouri F. Estimation of the shear strength of coarse-grained soils with fine particles. Transp Geotech, 2020, 25: 100407 doi: 10.1016/j.trgeo.2020.100407
    [27] Cheng K, Wang Y, Yang Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput Geotech, 2018, 100: 30 doi: 10.1016/j.compgeo.2018.04.004
    [28] Yuan J P, Zhan B, Chen S C, et al. Effects of water content and compaction degree on mechanical characteristics of roadbed. J Water Resour Archit Eng, 2013, 11(2): 98 doi: 10.3969/j.issn.1672-1144.2013.02.023

    袁俊平, 詹斌, 陳勝超, 等. 含水率和壓實度對路基填土力學特性的影響. 水利與建筑工程學報, 2013, 11(2):98 doi: 10.3969/j.issn.1672-1144.2013.02.023
    [29] Wei Y N, Fan W, Yu B, et al. Characterization and evolution of three-dimensional microstructure of Malan loess. CATENA, 2020, 192: 104585 doi: 10.1016/j.catena.2020.104585
    [30] ?nan Sezer G, Ramyar K, Karasu B, et al. Image analysis of sulfate attack on hardened cement paste. Mater Des, 2008, 29(1): 224 doi: 10.1016/j.matdes.2006.12.006
    [31] Kong L Y, Ostadhassan M, Hou X D, et al. Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS. J Petroleum Sci Eng, 2019, 175: 1039 doi: 10.1016/j.petrol.2019.01.050
  • 加載中
圖(19) / 表(2)
計量
  • 文章訪問數:  616
  • HTML全文瀏覽量:  215
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-02-24
  • 網絡出版日期:  2021-09-28
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回