<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鐵/鎳基奧氏體多晶合金晶界彎曲研究進展

趙霞 王旻 郝憲朝 查向東 高明 馬穎澈 劉奎

趙霞, 王旻, 郝憲朝, 查向東, 高明, 馬穎澈, 劉奎. 鐵/鎳基奧氏體多晶合金晶界彎曲研究進展[J]. 工程科學學報, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001
引用本文: 趙霞, 王旻, 郝憲朝, 查向東, 高明, 馬穎澈, 劉奎. 鐵/鎳基奧氏體多晶合金晶界彎曲研究進展[J]. 工程科學學報, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001
ZHAO Xia, WANG Min, HAO Xian-chao, ZHA Xiang-dong, GAO Ming, MA Ying-che, LIU Kui. Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys[J]. Chinese Journal of Engineering, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001
Citation: ZHAO Xia, WANG Min, HAO Xian-chao, ZHA Xiang-dong, GAO Ming, MA Ying-che, LIU Kui. Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys[J]. Chinese Journal of Engineering, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001

鐵/鎳基奧氏體多晶合金晶界彎曲研究進展

doi: 10.13374/j.issn2095-9389.2021.01.05.001
基金項目: 國家自然科學基金資助項目(51801211)
詳細信息
    通訊作者:

    E-mail: minwang@imr.ac.cn

  • 中圖分類號: TG142.7

Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys

More Information
  • 摘要: 對于在高溫環境服役的金屬材料,晶界作為組織結構上的薄弱環節常常引發晶界裂紋而造成合金失效,嚴重影響了材料的高溫力學性能表現。因而,如何改善晶界狀態、提高晶界強度,是提高合金高溫性能的關鍵。在鐵/鎳基奧氏體多晶合金中,采用晶界彎曲的方法強化晶界、改善合金性能一直受到國內外研究人員的廣泛關注。從彎曲晶界的獲得方法、形成機制及其對材料性能的影響3個方面概述了目前國內外的研究現狀。較為全面地總結了特殊熱處理與材料合金化等獲得彎曲晶界的方法;討論了不同合金中晶界第二相誘發晶界彎曲的驅動力和內在機理;介紹了彎曲晶界對材料力學性能、耐蝕性能及焊接性能的影響。最后,結合當前的研究現狀,圍繞彎曲晶界的形成條件和機制,以及彎曲晶界對性能的影響,提出了彎曲晶界未來的研究發展方向。

     

  • 圖  1  彎曲晶界示意圖[1]

    Figure  1.  Schematic of the wavelength and amplitude of a serrated grain boundary[1]

    圖  2  Ni–20Cr合金熱處理示意圖與對應的晶界SEM形貌。(a)控冷熱處理示意圖;(b)控冷熱處理的晶界形貌;(c)控冷熱處理同時進行5%應變壓縮示意圖;(d)控冷熱處理同時進行5%應變壓縮的晶界形貌[19]

    Figure  2.  Heat treatment regime and grain boundary SEM morphology of Ni–20Cr alloy: (a) schematic of controlled cooling heat treatment; (b) grain boundary morphology of the sample controlled cooled; (c) schematic of controlled cooling with a 5% compressive strain hold at the same time; (d) grain boundary morphology of the sample controlled cooled and 5% compressed [19]

    圖  3  600合金熱處理制度示意圖與對應的晶界SEM形貌。(a)緩冷熱處理制度;(b)分步時效熱處理制度;(c)緩冷熱處理后的彎曲晶界;(d)等溫時效熱處理后的平直晶界[12]

    Figure  3.  Heat treatment regime and grain boundary SEM morphology of Alloy 600: (a) schematic of slow cooling heat treatment; (b) schematic of step aging heat-treatment; (c) grain boundary morphology of the sample slowly cooled; (d) grain boundary morphology of the sample step aged[12]

    圖  4  690合金不同熱處理制度條件下的晶界和碳化物SEM形貌。(a)1080 ℃保溫10 min水淬后720 ℃保溫10 h;(b)1080 ℃保溫10 min后以0.5 ℃·min?1控冷[28]

    Figure  4.  SEM morphology of grain boundary and carbide in Alloy 690: (a) solution annealed at 1080 ℃ for 10 min before water quenching and aged at 720 ℃ for 10 h; (b) solution annealed at 1080 ℃ for 10 min and cooling at 0.5 ℃·min?1[28]

    圖  5  AISI 316不銹鋼時效處理初期未形成碳化物時的彎曲晶界SEM形貌[21]

    Figure  5.  SEM micrograph of the serrated grain boundary in AISI 316 stainless steel at the initial stage of aging prior to precipitation[21]

    圖  6  碳化物取向生長誘發彎曲晶界示意圖(固溶處理形成平直晶界aa′,碳化物析出后形成彎曲晶界bb′)[29]

    Figure  6.  Model for serrated grain boundary formation based on carbide precipitation (Flat grain boundary aa′ formed by solution treatment and serrated grain boundary bb′ formed after carbide precipitation)[29]

    圖  7  采用三維原子探針觀察Ni?20Cr二元合金中彎曲晶界處的元素分布。(a)取樣位置;(b)柱狀樣品中的彎曲晶界;(c)元素分析區域;(d)Ni原子濃度分布; (e)Cr原子濃度分布;(f)Ni+Cr原子濃度分布;(g)Ni和Cr原子的濃度曲線[19]

    Figure  7.  APT elemental distribution at the serrated grain boundary in Ni?20Cr binary alloy: (a) sampling position; (b) the serrated grain boundary in cylindrical sample; (c) elemental analyzing area; (d) concentration distribution of Ni atoms; (e) concentration distribution of Cr atoms; (f) concentration distribution of Ni+Cr atoms; (g) concentration curve of Ni and Cr atoms[19]

    圖  8  A合金的(a)彎曲晶界和(b)晶界γ′相組織形貌,以及B合金的(c)彎曲晶界和(d)晶界γ′相組織形貌[32]

    Figure  8.  Microstructural observations on the (a) serrated grain boundaries and (b) the γ′ phase in Alloy A cooled at 7 °C·min?1,and on the (c) serrated grain boundaries and (d) the γ′ phase in Alloy B cooled at 1 °C·min?1[32]

    圖  9  FGH98I合金固溶處理后緩冷過程中的γ′相與彎曲晶界。(a)γ′相長大誘發晶界彎曲;(b)γ′相長大誘發晶界彎曲示意圖;(c)樹枝狀γ′相生長誘發晶界彎曲;(d)樹枝狀γ′相生長誘發晶界彎曲示意圖;(e)γ′相移動誘發晶界彎曲;(f)γ′相移動誘發晶界彎曲示意圖;(g)晶界兩側γ′相密度不同誘發的彎曲晶界;(h)晶界兩側γ′相密度不同誘發的彎曲晶界示意圖[3]

    Figure  9.  γ′ phase and grain boundary serration in FGH98I alloy after solution annealing and slow cooling: (a) serration induced by γ′ phase growth; (b) schematic of the γ′ phase growth induced serration; (c) serration induced by dendritic γ′ phase formation; (d) schematic of the dendritic γ′ phase formation induced serration; (e) serration induced by γ′ phase movement; (f) schematic of the γ′ phase movement induced serration; (g) serration induced by particle density difference; (h) schematic of the particle density difference induced serration [3]

    圖  10  晶界中邊界長度示意圖。(a)平直晶界;(b)彎曲晶界[2]

    Figure  10.  Schematic of boundary lengths for: (a) flat and (b) serrated grain boundaries [2]

    圖  11  617合金熱腐蝕元素滲透過程示意圖。(a)平直晶界;(b)彎曲晶界[52]

    Figure  11.  Schematic highlighting the extent of percolation in: (a) flat grain boundary; (b) serrated grain boundary specimens of Alloy 617 during thermal corrosion[52]

    圖  12  (a)平直晶界和(b)彎曲晶界拉應力的法向分應力[53]

    Figure  12.  Normal stress components of the tensile stresses on (a) flat and (b) serrated grain boundaries[53]

    圖  13  263合金平直晶界的(a)SEM形貌和(b)B元素分布,以及彎曲晶界的(c)SEM形貌和(d)B元素分布[54]

    Figure  13.  SEM micrographs and corresponding IMS boron images for the (a?b) flat grain boundary sample, and the (c?d) serrated grain boundary sample[54]

    表  1  標準熱處理和控冷熱處理對晶界彎曲的影響

    Table  1.   Effects of standard and controlled-cooling heat treatments on the serration of grain boundary

    AlloyHeat treatment typeHeat treatment regimeGrain boundary typeReference
    AISI304Standard1050 ℃×1 h+WQ,760 ℃×50 h+WQFlat[14]
    Controlled cooling1050 ℃×1 h+4 ℃·min?1→760 ℃×50 h+WQSerrated
    Nimonic263Standard1150 ℃×30 min+WQ,800 ℃×8 h+ACFlat[15]
    Controlled cooling1150 ℃×5 min+10 ℃·min?1→800 ℃×8 h+ACSerrated
    AISI316Standard1050 ℃×1 h+WQ,760 ℃×1 h+WQFlat[16]
    (The mass fraction of
    carbon is 0.044)
    Controlled cooling1050 ℃×1 h+FC→760 ℃×1 h+WQSerrated
    In718Standard1090 ℃×1 h+WQ,850 ℃×4 h+WQFlat[17]
    Controlled cooling1090 ℃×1 h+FC→850 ℃×4 h+WQSerrated
    GH151Standard1250 ℃×5 h+AC,1000 ℃×5 h+AC,950 ℃×10 h+ACFlat[18]
    Controlled cooling1250 ℃×5 h+0.5 ℃·min?1→1070 ℃×4 h+ACSerrated
    Note: WQ refers to water quenching, AC refers to air cooling and FC refers to furnace cooling.
    下載: 導出CSV

    表  2  固溶制度對晶界彎曲的影響

    Table  2.   Effect of solution heat treatment on the serration of grain boundary

    AlloyHeat treatment regimeGrain boundary typeAverage amplitude/
    μm
    Average wavelength/
    μm
    Reference
    In6001100 ℃×2 h+0.25 ℃·min?1→900 ℃+WQFlat[12]
    1140 ℃×2 h+0.25 ℃·min?1→900 ℃+WQSerrated0.9224.54
    1120 ℃×2 h+3 ℃·min?1→900 ℃+WQSerrated0.7521.6
    1140 ℃×2 h+3 ℃·min?1→900 ℃+WQSerrated0.7723.8
    1000 ℃×2 h+12 ℃·min?1→900 ℃+WQFlat
    1100 ℃×2 h+12 ℃·min?1→900 ℃+WQSerrated0.6419.02
    1140 ℃×2 h+12 ℃·min?1→900 ℃+WQSerrated0.5823.44
    Ni?20Cr1200 ℃×5 min+5 ℃·min?1→800 ℃+WQFlat[19]
    1250 ℃×5 min+5 ℃·min?1→800 ℃+WQSerrated
    下載: 導出CSV

    表  3  冷速對晶界彎曲的影響

    Table  3.   Effect of cooling rate on the serration of grain boundary

    AlloyHeat treatment regimeGrain boundary typeAverage amplitude/
    μm
    Average wavelength/
    μm
    Reference
    In6001100℃×2 h+12 ℃·min?1→900 ℃+WQSerrated0.6419.02[12]
    1100 ℃×2 h+30 ℃·min?1→900 ℃+WQSerrated0.6213.7
    1140 ℃×2 h+0.25 ℃·min?1→900 ℃+WQSerrated0.9224.54
    1140 ℃×2 h+3 ℃·min?1→900 ℃+WQSerrated0.7723.8
    1140 ℃×2 h+12 ℃·min?1→900 ℃+WQSerrated0.5823.44
    1140 ℃×2 h+60 ℃·min?1→900 ℃+WQSerrated0.4721.83
    FGH98I1190 ℃×1 h+0.1 ℃·s?1→Room temperatureSerrated4.020.44[3]
    1190 ℃×1 h+0.4 ℃·s?1→Room temperatureSerrated2.610.86
    1190 ℃×1 h+1.4 ℃·s?1→Room temperatureSerrated0.982.26
    1190 ℃×1 h+4.3 ℃·s?1→Room temperatureSerrated0.646.41
    1190 ℃×1 h+10.8 ℃·s?1→Room temperatureSerrated0.6315.74
    下載: 導出CSV

    表  4  控冷后直接等溫時效處理對晶界彎曲的影響

    Table  4.   Effect of direct isothermal aging treatment on the serration of grain boundary

    AlloyHeat treatment regimeGrain boundary typeAverage amplitude/
    μm
    Average wavelength/
    μm
    Reference
    In6001140 ℃×2 h+12 ℃·min?1→900 ℃+WQSerrated0.5823.44[12]
    1140 ℃×2 h+12 ℃·min?1→900 ℃×30 min+WQSerrated0.6226.15
    1140 ℃×2 h+12 ℃·min?1→1040 ℃× 30 min+WQFlat
    1140 ℃×2 h+12 ℃·min?1→1060 ℃× 30 min+WQFlat
    下載: 導出CSV

    表  5  標準熱處理和等溫熱處理對晶界彎曲的影響

    Table  5.   Effects of standard and isothermal heat treatments on the serration of grain boundary

    AlloyHeat treatment typeHeat treatment regimeGrain boundary typeReference
    GH37Standard1180 ℃×2 h+AC,1150 ℃×4 h+AC,800 ℃×16 h+ACFlat[18]
    Isothermal1180 ℃×2 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $900 ℃×4 h+ACSerrated
    GH33Standard1080 ℃×8 h+AC,700 ℃×10 h+ACFlat
    Isothermal1080 ℃×8 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $900 ℃×4 h+ACSerrated
    GH36Standard1140 ℃×80 min+WQ,670 ℃×12 h+780×10 h+ACFlat
    Isothermal1180 ℃×80 min$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $800 ℃×16 h+ACSerrated
    Эи69Standard1140 ℃×80 min+AC,700 ℃×16 h+ACFlat
    Isothermal1180 ℃×2 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $900 ℃×4 h+ACSerrated
    GH220Standard1220 ℃×4 h+AC,1050 ℃×4 h+AC,950 ℃×2 h+ACFlat[23-25]
    Isothermal1220 ℃×4 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}}{\to } $1070 ℃×2.5 h+AC,950 ℃×2 h+ACSerrated
    下載: 導出CSV

    表  6  不同合金中平直晶界與彎曲晶界對蠕變性能的影響

    Table  6.   Effects of flat and serrated grain boundaries on the creep properties of different alloys

    Alloy(Temperature/°C)/
    (Stress/MPa)
    Creep life/hCreep life
    increase/%
    Fracture plasticity
    increase /%
    Reference
    Flat grain boundarySerrated grain boundary
    Cr–15Co–Ni850/343150183–193.522–29[35]
    Ni–Cr–W–Mo850/35015019328.67[36]
    GH49850/3509412027.6673[37-38]
    21Cr–4Ni–9Mn700/19637063070.27[39-40]
    900/27.423031034.78
    In718650/6251200160033.33 [17]
    In600700/17029.8300.675.7[41]
    815/7040.759.846.939
    900/4046.163.938.615.3
    下載: 導出CSV

    表  7  GH220合金彎曲晶界與平直晶界在950 ℃條件下的拉伸性能[2]

    Table  7.   Tensile properties of GH220 alloys with flat and serrated grain boundaries at 950 °C [2]

    Grain boundary typeTest temperature/
    °C
    Tensile
    strength/
    MPa
    Elongation/
    %
    Reduction
    of area/
    %
    Flat grain boundary950546.2513.619.7
    Serrated grain boundary950591.3620.725.4
    Percentage increase/%0850.728.9
    下載: 導出CSV

    表  8  AISI304不銹鋼的彎曲晶界與平直晶界在600 ℃條件下的拉伸性能[14]

    Table  8.   Tensile properties of AISI304 steel with flat and serrated grain boundaries at 600 °C [14]

    Grain boundary
    type
    Test temperature/
    °C
    Yield strength/
    MPa
    Tensile strength/
    MPa
    Elongation/
    %
    Flat grain boundary60014937940.0
    Serrated grain boundary60015338339.6
    下載: 導出CSV

    表  9  Inconel751合金在大氣及熱腐蝕環境中的蠕變性能[2]

    Table  9.   Creep properties of Inconel751 alloy in air and in a corrosive environment [2]

    Grain boundary typeCreep strength /MPa
    In air Corrosive environment
    100 h1000 h 100 h
    Flat grain boundary255149 68
    Serrated grain boundary273196 153
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Latief F H, Hong H U, Blanc T, et al. Influence of chromium content on microstructure and grain boundary serration formation in a ternary Ni?xCr?0.1C model alloy. Mater Chem Phys, 2014, 148(3): 1194 doi: 10.1016/j.matchemphys.2014.09.047
    [2] Ye R Z, Chen G L. On the zigzag grain boundary in high temperature superalloys. Mater Mech Eng, 1985, 9(4): 1

    葉銳曾, 陳國良. 論高溫合金中的彎曲晶界——廣泛應用彎曲晶界熱處理工藝. 機械工程材料, 1985, 9(4):1
    [3] Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ' phases in a high-performance nickel-based powder metallurgy superalloy. J Mater Eng, 2015, 43(6): 7 doi: 10.11868/j.issn.1001-4381.2015.06.002

    楊萬鵬, 胡本芙, 劉國權, 等. 高性能鎳基粉末高溫合金中γ'相形態致鋸齒晶界形成機理研究. 材料工程, 2015, 43(6):7 doi: 10.11868/j.issn.1001-4381.2015.06.002
    [4] Koul A K, Gessinger G H. On the mechanism of serrated grain boundary formation in Ni-based superalloys. Acta Metall, 1983, 31(7): 1061 doi: 10.1016/0001-6160(83)90202-X
    [5] Wu X J, Koul A K. Grain boundary sliding at serrated grain boundaries. Adv Perform Mater, 1997, 4(4): 409 doi: 10.1023/A:1008648628507
    [6] Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ' precipitates and grain. Metall Trans A, 1993, 24(8): 1733 doi: 10.1007/BF02657848
    [7] Danflou H L, Macia M, Sanders T H, et al. Mechanisms of formation of serrated grain boundaries in nickel base superalloys // Superalloys 1996 (Eighth International Symposium). Atlanta, 1996: 119
    [8] Mitchell R J, Li H Y, Huang Z W. On the formation of serrated grain boundaries and fan type structures in an advanced polycrystalline nickel-base superalloy. J Mater Process Technol, 2009, 209(2): 1011 doi: 10.1016/j.jmatprotec.2008.03.008
    [9] Lu X D, Deng Q, Du J H, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy. J Alloys Compd, 2009, 477(1-2): 100 doi: 10.1016/j.jallcom.2008.10.088
    [10] Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd, 2009, 486(1-2): 195 doi: 10.1016/j.jallcom.2009.07.020
    [11] Jiang L, Hu R, Kou H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy. Mater Sci Eng A, 2012, 536: 37 doi: 10.1016/j.msea.2011.11.060
    [12] Tang Y T, Karamched P, Liu J L, et al. Grain boundary serration in nickel alloy inconel 600: Quantification and mechanisms. Acta Mater, 2019, 181: 352 doi: 10.1016/j.actamat.2019.09.037
    [13] Hong H U, Kim I S, Choi B G, et al. On the mechanism of serrated grain boundary formation in Ni-based superalloys with low γ' volume fraction // Superalloys 2012. Hoboken, 2012: 53
    [14] Hong H U, Nam S W. Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel. J Mater Sci, 2003, 38(7): 1535 doi: 10.1023/A:1022989002179
    [15] Hong H U, Jeong H W, Kim I S, et al. A study on the formation of serrated grain boundaries and its applications in nimonic 263. Mater Sci Forum, 2010, 638-642: 2245 doi: 10.4028/www.scientific.net/MSF.638-642.2245
    [16] Kim K J, Ginsztler J, Nam S W. The role of carbon on the occurrence of grain boundary serration in an AISI 316 stainless steel during aging heat treatment. Mater Lett, 2005, 59(11): 1439 doi: 10.1016/j.matlet.2004.12.050
    [17] Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater Sci Eng A, 2011, 530: 525 doi: 10.1016/j.msea.2011.10.014
    [18] Ge Z Y, Yu W X, Yang L Y, et al. Research of zig-zag grain boundary universality in austenitic superalloys. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 51

    葛占英, 于文秀, 楊蓮隱, 等. 奧氏體型高溫合金彎曲晶界普遍性的研究. 北京鋼鐵學院學報, 1986, 8(增刊1): 51
    [19] Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni?20Cr binary model alloy. Mater Charact, 2018, 135: 146 doi: 10.1016/j.matchar.2017.11.047
    [20] Jeong C Y, Kim K J, Hong H U, et al. Effects of aging temperature and grain size on the formation of serrated grain boundaries in an AISI 316 stainless steel. Mater Chem Phys, 2013, 139(1): 27 doi: 10.1016/j.matchemphys.2012.11.021
    [21] Hong H U, Nam S W. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel. Mater Sci Eng A, 2002, 332(1-2): 255 doi: 10.1016/S0921-5093(01)01754-3
    [22] Kim K J, Hong H U, Nam S W. A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel. Mater Chem Phys, 2011, 126(3): 480 doi: 10.1016/j.matchemphys.2010.12.025
    [23] Tan J F, Jang S R, Tian S F. Researches on wave grain boundaries heat treatment processes for gh220 alloy. J Aeronaut Mater, 1982, 10(Suppl 1): 19

    譚菊芬, 姜淑榮, 田世藩. GH220合金彎曲晶界熱處理制度的研究. 航空材料, 1982, 10(增刊1): 19
    [24] Ge Z Y, Ye R Z, Sun J G, et al. Effect of alloying elements on zig-zag grain boundary in superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 61

    葛占英, 葉銳曾, 孫金貴, 等. 合金元素對GH220合金彎曲晶界的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 61
    [25] Xu Z C, Ye R Z, Wang D, et al. Study on the formation of zig-zag grain boundary in 10Cr?15Co?Ni Ni-based superalloy. J Beijing Univ Iron Steel Technol, 1982, 4(Suppl 1): 78

    徐志超, 葉銳曾, 王迪, 等. 在10Cr?15Co?Ni基高溫合金中彎曲晶界形成的研究. 北京鋼鐵學院學報, 1982, 4(增刊1): 78
    [26] Zhang X. Effect of Microalloyed Element Niobium on the Microstructure and Properties of Austenite-Based Weld Metals [Dissertation]. Hefei: University of Science and Technology of China, 2019

    張旭. 微合金元素鈮對奧氏體基焊縫金屬組織與性能的影響[學位論文]. 合肥: 中國科學技術大學, 2019
    [27] Ye R Z, Xu Z C, Ge Z Y, et al. Mechanism of ziggag grain boundary formation in wrought nickelbase superalloys. J Beijing Univ Iron Steel Technol, 1985, 7(2): 29

    葉銳曾, 徐志超, 葛占英, 等. 鎳基變形高溫合金中的彎曲晶界形成的機制. 北京鋼鐵學院學報, 1985, 7(2):29
    [28] Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Mater Charact, 2014, 96: 28 doi: 10.1016/j.matchar.2014.07.008
    [29] Yamazaki M. The effect of two-step solution treatment on the creep rupture properties of a high carbon 18Cr-12Ni stainless steel. J Jpn Inst Met, 1966, 30: 1032 doi: 10.2320/jinstmet1952.30.11_1032

    山崎道夫. 高炭素18Cr?12Niステンレス鋼のクリープ破斷強さにおよぼす2段溶體化処理の影響. 日本金屬學會誌, 1966, 30:1032 doi: 10.2320/jinstmet1952.30.11_1032
    [30] Wang L, Ye R Z, Zhou S L, et al. Research on formation rule of G.B. plate-like carbide in GH220 Ni-base wrought superalloy. J Univ Sci Technol Beijing, 1990, 12(3): 243

    汪林, 葉銳曾, 周守禮, 等. GH220合金中晶界針狀碳化物的成因. 北京科技大學學報, 1990, 12(3):243
    [31] Li H, Xia S, Zhou B X, et al. Study of carbide precipitation at grain boundary in nickel base alloy 690. Acta Metall Sinica, 2011, 47(7): 853

    李慧, 夏爽, 周邦新, 等. 鎳基690合金中晶界碳化物析出的研究. 金屬學報, 2011, 47(7):853
    [32] Zhong Z Y, Ma P L, Chen G S, et al. A study of zigzag grain boundary in high alloyed wrought nickel-base superalloy. Acta Met Sinica, 1983, 19(3): 54

    仲增墉, 馬培立, 陳淦生, 等. 高合金化鎳基變形高溫合金中彎曲晶界的初步研究. 金屬學報, 1983, 19(3):54
    [33] Koul A K, Thamburaj R. Serrated grain boundary formation potential of Ni-based superalloys and its implications. Metall Trans A, 1985, 16(1): 17 doi: 10.1007/BF02656707
    [34] Bhuyan P, Reddy K V, Pradhan S K, et al. A potential insight into the serration behaviour of Σ3n (n≤3) boundaries in Alloy 617. Mater Chem Phys, 2020, 248: 122919 doi: 10.1016/j.matchemphys.2020.122919
    [35] Ye R Z, Ge Z Y, Wang Y Y, et al. Effect of zigzag grain boundary on creep rupture of a 10Cr?15Co?Ni?BASE wrought superalloy. Acta Metall Sinica, 1984, 20(1): 34

    葉銳曾, 葛占英, 王曰毅, 等. 彎曲晶界對10Cr?15Co?Ni基變形高溫合金蠕變斷裂的影響. 金屬學報, 1984, 20(1):34
    [36] Xiang C J. Investigation into curved crystal boundary beheawiour of Ni?Cr?W?Mo alloy under creep fracture. J Sichuan Inst Technol, 1997, 16(4): 15

    向朝進. 彎曲晶界在 Ni?Cr?W?Mo 合金蠕變斷裂中的行為研究. 四川工業學院學報, 1997, 16(4):15
    [37] Zhang Y P, Wang Y Y, Li Z Y, et al. The effect of zigzag grain boundaries on dislocation configurations of GH49 alloy in creep process. J Chongqing Univ Nat Sci Ed, 1988, 11(1): 97

    張亞平, 王曰毅, 李志云, 等. 彎曲晶界對GH49合金蠕變過程中位錯組態的影響. 重慶大學學報(自然科學版), 1988, 11(1):97
    [38] Zhang Y P, Luo H, Wang Y Y, et al. The effect of zigzag grain boundaries on process of creep and fracture in GH49 alloy. J Chongqing Univ Nat Sci Ed, 1984, 7(3): 141

    張亞平, 羅虹, 王曰毅, 等. GH49合金在蠕變斷裂過程中彎曲晶界的作用. 重慶大學學報(自然科學版), 1984, 7(3):141
    [39] Tanaka M, Miyagawa O, Sakaki T, et al. Creep rupture strength and grain-boundary sliding in austenitic 21Cr?4Ni?9Mn steels with serrated grain boundaries. J Mater Sci, 1988, 23(2): 621 doi: 10.1007/BF01174696
    [40] Tanaka M, Iizuka H, Ashihara F. Effects of serrated grain boundaries on the crack growth in austenitic heat-resisting steels during high-temperature creep. J Mater Sci, 1988, 23(11): 3827 doi: 10.1007/BF01106799
    [41] Tang Y T, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy inconel 600: Generation and effects on mechanical behavior. Metall Mater Trans A, 2018, 49(9): 4324 doi: 10.1007/s11661-018-4671-7
    [42] Larson J M, Floreen S. Metallurgical factors affecting the crack growth resistance of a superalloy. Metall Trans A, 1977, 8(1): 51 doi: 10.1007/BF02677263
    [43] Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity. Metall Trans A, 1976, 7(8): 1225 doi: 10.1007/BF02656607
    [44] Raj R, Ashby M F. On grain boundary sliding and diffusional creep. Metall Trans, 1971, 2(4): 1113 doi: 10.1007/BF02664244
    [45] Ge Z Y, Ye R Z, Sun J G, et al. Effect of zig-zag grain boundary on fatigue property of superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 69

    葛占英, 葉銳曾, 孫金貴, 等. 彎曲晶界對GH220合金疲勞性能的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 69
    [46] Tanaka M. Evolution of grain-boundary serration in fatigue. J Mater Sci Lett, 1995, 14(6): 381
    [47] Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy. Chin J Eng, 2019, 41(10): 1298

    田少鯤, 李靜媛, 張俊龍, 等. Sc對7056鋁合金組織和性能的影響. 工程科學學報, 2019, 41(10):1298
    [48] Wu Z H, Qi Z C, Xu P P, et al. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets. Chin J Eng, 2020, 42(5): 620

    吳宗河, 祁梓宸, 許朋朋, 等. 熱軋7075/AZ31B復合板的顯微組織及結合性能. 工程科學學報, 2020, 42(5):620
    [49] Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc)alloys. Chin J Eng, 2020, 42(5): 612

    王宇, 熊柏青, 李志輝, 等. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能. 工程科學學報, 2020, 42(5):612
    [50] Zhang X F, Wan Y X, Wu X J, et al. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel. Chin J Eng, 2020, 42(8): 949

    章小峰, 萬亞雄, 武學俊, 等. Fe?Mn?(Al)?C高強韌性鋼氫脆微觀機制的研究進展. 工程科學學報, 2020, 42(8):949
    [51] Yoshiba M, Miyagawa O. Effect of grain boundary serration on the fatigue, creep and cyclic creep strengths of a nickel-base superalloy in air and in hot corrosive environment. ISIJ Int, 1986, 26(1): 69 doi: 10.2355/isijinternational1966.26.69
    [52] Bhuyan P, Pradhan S K, Mitra R, et al. Evaluating the efficiency of grain boundary serrations in attenuating high-temperature hot corrosion degradation in Alloy 617. Corros Sci, 2019, 149: 164 doi: 10.1016/j.corsci.2019.01.007
    [53] Kim H P, Choi M J, Kim S W, et al. Effect of serrated grain boundary on stress corrosion cracking of Alloy 600. Nucl Eng Technol, 2018, 50(7): 1131 doi: 10.1016/j.net.2018.05.009
    [54] Hong H U, Kim I S, Choi B G, et al. On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy. Metall Mater Trans A, 2012, 43(1): 173 doi: 10.1007/s11661-011-0837-2
  • 加載中
圖(13) / 表(9)
計量
  • 文章訪問數:  1534
  • HTML全文瀏覽量:  297
  • PDF下載量:  93
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-05
  • 網絡出版日期:  2021-09-27
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回