Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys
-
摘要: 對于在高溫環境服役的金屬材料,晶界作為組織結構上的薄弱環節常常引發晶界裂紋而造成合金失效,嚴重影響了材料的高溫力學性能表現。因而,如何改善晶界狀態、提高晶界強度,是提高合金高溫性能的關鍵。在鐵/鎳基奧氏體多晶合金中,采用晶界彎曲的方法強化晶界、改善合金性能一直受到國內外研究人員的廣泛關注。從彎曲晶界的獲得方法、形成機制及其對材料性能的影響3個方面概述了目前國內外的研究現狀。較為全面地總結了特殊熱處理與材料合金化等獲得彎曲晶界的方法;討論了不同合金中晶界第二相誘發晶界彎曲的驅動力和內在機理;介紹了彎曲晶界對材料力學性能、耐蝕性能及焊接性能的影響。最后,結合當前的研究現狀,圍繞彎曲晶界的形成條件和機制,以及彎曲晶界對性能的影響,提出了彎曲晶界未來的研究發展方向。Abstract: Grain boundaries of high-temperature metallic materials, such as alloys, are often considered weak. At elevated temperatures, the strength of the grain boundary is relatively lower than that of the intragranular areas, and cracks often initially form on the grain boundary and then develop along it, which leads to premature failure and significantly degrades the mechanical performance of the material at high temperature. Therefore, how to optimize the morphology and improve the strength of the grain boundary is key to improving the properties of alloys at high temperatures. A serrated grain boundary is a type of grain boundary with a wave shape evolving from the bending of the flat grain boundary during special heat treatments. For iron/nickel-based austenitic polycrystalline alloys, grain boundary serration has been viewed as an effective method for strengthening their grain boundaries and enhancing their properties. Here, the research progress of serrated grain boundaries was reviewed based on the aspects of formation method, formation mechanism, and their influence on the properties of materials. The methods of formation of serrated grain boundaries for different types of alloys, such as controlled cooling heat treatment, isothermal heat treatment, mechanical heat treatment, and alloying, were summarized. The interactions between the grain boundary and intergranular precipitates, such as M7C3 carbide, M23C6 carbide, and γ′ phase, were discussed in detail to understand the formation mechanism of the serrated grain boundary and how it improving the properties of materials and reveal the driving force of grain boundary migration. In addition, the influences of the serrated grain boundary on the mechanical (rupture, creep, fatigue, and tensile) properties, corrosion properties (hot and stress corrosion), and heat-affected-zone (HAZ) liquefying cracking behavior of different alloys were analyzed. Last, based on the abovementioned details, development directions for future work on serrated grain boundaries were outlined.
-
圖 2 Ni–20Cr合金熱處理示意圖與對應的晶界SEM形貌。(a)控冷熱處理示意圖;(b)控冷熱處理的晶界形貌;(c)控冷熱處理同時進行5%應變壓縮示意圖;(d)控冷熱處理同時進行5%應變壓縮的晶界形貌[19]
Figure 2. Heat treatment regime and grain boundary SEM morphology of Ni–20Cr alloy: (a) schematic of controlled cooling heat treatment; (b) grain boundary morphology of the sample controlled cooled; (c) schematic of controlled cooling with a 5% compressive strain hold at the same time; (d) grain boundary morphology of the sample controlled cooled and 5% compressed [19]
圖 3 600合金熱處理制度示意圖與對應的晶界SEM形貌。(a)緩冷熱處理制度;(b)分步時效熱處理制度;(c)緩冷熱處理后的彎曲晶界;(d)等溫時效熱處理后的平直晶界[12]
Figure 3. Heat treatment regime and grain boundary SEM morphology of Alloy 600: (a) schematic of slow cooling heat treatment; (b) schematic of step aging heat-treatment; (c) grain boundary morphology of the sample slowly cooled; (d) grain boundary morphology of the sample step aged[12]
圖 4 690合金不同熱處理制度條件下的晶界和碳化物SEM形貌。(a)1080 ℃保溫10 min水淬后720 ℃保溫10 h;(b)1080 ℃保溫10 min后以0.5 ℃·min?1控冷[28]
Figure 4. SEM morphology of grain boundary and carbide in Alloy 690: (a) solution annealed at 1080 ℃ for 10 min before water quenching and aged at 720 ℃ for 10 h; (b) solution annealed at 1080 ℃ for 10 min and cooling at 0.5 ℃·min?1[28]
圖 7 采用三維原子探針觀察Ni?20Cr二元合金中彎曲晶界處的元素分布。(a)取樣位置;(b)柱狀樣品中的彎曲晶界;(c)元素分析區域;(d)Ni原子濃度分布; (e)Cr原子濃度分布;(f)Ni+Cr原子濃度分布;(g)Ni和Cr原子的濃度曲線[19]
Figure 7. APT elemental distribution at the serrated grain boundary in Ni?20Cr binary alloy: (a) sampling position; (b) the serrated grain boundary in cylindrical sample; (c) elemental analyzing area; (d) concentration distribution of Ni atoms; (e) concentration distribution of Cr atoms; (f) concentration distribution of Ni+Cr atoms; (g) concentration curve of Ni and Cr atoms[19]
圖 9 FGH98I合金固溶處理后緩冷過程中的γ′相與彎曲晶界。(a)γ′相長大誘發晶界彎曲;(b)γ′相長大誘發晶界彎曲示意圖;(c)樹枝狀γ′相生長誘發晶界彎曲;(d)樹枝狀γ′相生長誘發晶界彎曲示意圖;(e)γ′相移動誘發晶界彎曲;(f)γ′相移動誘發晶界彎曲示意圖;(g)晶界兩側γ′相密度不同誘發的彎曲晶界;(h)晶界兩側γ′相密度不同誘發的彎曲晶界示意圖[3]
Figure 9. γ′ phase and grain boundary serration in FGH98I alloy after solution annealing and slow cooling: (a) serration induced by γ′ phase growth; (b) schematic of the γ′ phase growth induced serration; (c) serration induced by dendritic γ′ phase formation; (d) schematic of the dendritic γ′ phase formation induced serration; (e) serration induced by γ′ phase movement; (f) schematic of the γ′ phase movement induced serration; (g) serration induced by particle density difference; (h) schematic of the particle density difference induced serration [3]
表 1 標準熱處理和控冷熱處理對晶界彎曲的影響
Table 1. Effects of standard and controlled-cooling heat treatments on the serration of grain boundary
Alloy Heat treatment type Heat treatment regime Grain boundary type Reference AISI304 Standard 1050 ℃×1 h+WQ,760 ℃×50 h+WQ Flat [14] Controlled cooling 1050 ℃×1 h+4 ℃·min?1→760 ℃×50 h+WQ Serrated Nimonic263 Standard 1150 ℃×30 min+WQ,800 ℃×8 h+AC Flat [15] Controlled cooling 1150 ℃×5 min+10 ℃·min?1→800 ℃×8 h+AC Serrated AISI316 Standard 1050 ℃×1 h+WQ,760 ℃×1 h+WQ Flat [16] (The mass fraction of
carbon is 0.044)Controlled cooling 1050 ℃×1 h+FC→760 ℃×1 h+WQ Serrated In718 Standard 1090 ℃×1 h+WQ,850 ℃×4 h+WQ Flat [17] Controlled cooling 1090 ℃×1 h+FC→850 ℃×4 h+WQ Serrated GH151 Standard 1250 ℃×5 h+AC,1000 ℃×5 h+AC,950 ℃×10 h+AC Flat [18] Controlled cooling 1250 ℃×5 h+0.5 ℃·min?1→1070 ℃×4 h+AC Serrated Note: WQ refers to water quenching, AC refers to air cooling and FC refers to furnace cooling. 表 2 固溶制度對晶界彎曲的影響
Table 2. Effect of solution heat treatment on the serration of grain boundary
Alloy Heat treatment regime Grain boundary type Average amplitude/
μmAverage wavelength/
μmReference In600 1100 ℃×2 h+0.25 ℃·min?1→900 ℃+WQ Flat — — [12] 1140 ℃×2 h+0.25 ℃·min?1→900 ℃+WQ Serrated 0.92 24.54 1120 ℃×2 h+3 ℃·min?1→900 ℃+WQ Serrated 0.75 21.6 1140 ℃×2 h+3 ℃·min?1→900 ℃+WQ Serrated 0.77 23.8 1000 ℃×2 h+12 ℃·min?1→900 ℃+WQ Flat — — 1100 ℃×2 h+12 ℃·min?1→900 ℃+WQ Serrated 0.64 19.02 1140 ℃×2 h+12 ℃·min?1→900 ℃+WQ Serrated 0.58 23.44 Ni?20Cr 1200 ℃×5 min+5 ℃·min?1→800 ℃+WQ Flat — — [19] 1250 ℃×5 min+5 ℃·min?1→800 ℃+WQ Serrated — — 表 3 冷速對晶界彎曲的影響
Table 3. Effect of cooling rate on the serration of grain boundary
Alloy Heat treatment regime Grain boundary type Average amplitude/
μmAverage wavelength/
μmReference In600 1100℃×2 h+12 ℃·min?1→900 ℃+WQ Serrated 0.64 19.02 [12] 1100 ℃×2 h+30 ℃·min?1→900 ℃+WQ Serrated 0.62 13.7 1140 ℃×2 h+0.25 ℃·min?1→900 ℃+WQ Serrated 0.92 24.54 1140 ℃×2 h+3 ℃·min?1→900 ℃+WQ Serrated 0.77 23.8 1140 ℃×2 h+12 ℃·min?1→900 ℃+WQ Serrated 0.58 23.44 1140 ℃×2 h+60 ℃·min?1→900 ℃+WQ Serrated 0.47 21.83 FGH98I 1190 ℃×1 h+0.1 ℃·s?1→Room temperature Serrated 4.02 0.44 [3] 1190 ℃×1 h+0.4 ℃·s?1→Room temperature Serrated 2.61 0.86 1190 ℃×1 h+1.4 ℃·s?1→Room temperature Serrated 0.98 2.26 1190 ℃×1 h+4.3 ℃·s?1→Room temperature Serrated 0.64 6.41 1190 ℃×1 h+10.8 ℃·s?1→Room temperature Serrated 0.63 15.74 表 4 控冷后直接等溫時效處理對晶界彎曲的影響
Table 4. Effect of direct isothermal aging treatment on the serration of grain boundary
Alloy Heat treatment regime Grain boundary type Average amplitude/
μmAverage wavelength/
μmReference In600 1140 ℃×2 h+12 ℃·min?1→900 ℃+WQ Serrated 0.58 23.44 [12] 1140 ℃×2 h+12 ℃·min?1→900 ℃×30 min+WQ Serrated 0.62 26.15 1140 ℃×2 h+12 ℃·min?1→1040 ℃× 30 min+WQ Flat — — 1140 ℃×2 h+12 ℃·min?1→1060 ℃× 30 min+WQ Flat — — 表 5 標準熱處理和等溫熱處理對晶界彎曲的影響
Table 5. Effects of standard and isothermal heat treatments on the serration of grain boundary
Alloy Heat treatment type Heat treatment regime Grain boundary type Reference GH37 Standard 1180 ℃×2 h+AC,1150 ℃×4 h+AC,800 ℃×16 h+AC Flat [18] Isothermal 1180 ℃×2 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $900 ℃×4 h+AC Serrated GH33 Standard 1080 ℃×8 h+AC,700 ℃×10 h+AC Flat Isothermal 1080 ℃×8 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $900 ℃×4 h+AC Serrated GH36 Standard 1140 ℃×80 min+WQ,670 ℃×12 h+780×10 h+AC Flat Isothermal 1180 ℃×80 min$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $800 ℃×16 h+AC Serrated Эи69 Standard 1140 ℃×80 min+AC,700 ℃×16 h+AC Flat Isothermal 1180 ℃×2 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g}}{\to } $900 ℃×4 h+AC Serrated GH220 Standard 1220 ℃×4 h+AC,1050 ℃×4 h+AC,950 ℃×2 h+AC Flat [23-25] Isothermal 1220 ℃×4 h$ \stackrel{\mathrm{A}\mathrm{i}\mathrm{r}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{?}\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{n}}{\to } $1070 ℃×2.5 h+AC,950 ℃×2 h+AC Serrated 表 6 不同合金中平直晶界與彎曲晶界對蠕變性能的影響
Table 6. Effects of flat and serrated grain boundaries on the creep properties of different alloys
Alloy (Temperature/°C)/
(Stress/MPa)Creep life/h Creep life
increase/%Fracture plasticity
increase /%Reference Flat grain boundary Serrated grain boundary Cr–15Co–Ni 850/343 150 183–193.5 22–29 [35] Ni–Cr–W–Mo 850/350 150 193 28.67 [36] GH49 850/350 94 120 27.66 73 [37-38] 21Cr–4Ni–9Mn 700/196 370 630 70.27 [39-40] 900/27.4 230 310 34.78 In718 650/625 1200 1600 33.33 [17] In600 700/170 29.8 30 0.67 5.7 [41] 815/70 40.7 59.8 46.93 9 900/40 46.1 63.9 38.61 5.3 表 7 GH220合金彎曲晶界與平直晶界在950 ℃條件下的拉伸性能[2]
Table 7. Tensile properties of GH220 alloys with flat and serrated grain boundaries at 950 °C [2]
Grain boundary type Test temperature/
°CTensile
strength/
MPaElongation/
%Reduction
of area/
%Flat grain boundary 950 546.25 13.6 19.7 Serrated grain boundary 950 591.36 20.7 25.4 Percentage increase/% 0 8 50.7 28.9 表 8 AISI304不銹鋼的彎曲晶界與平直晶界在600 ℃條件下的拉伸性能[14]
Table 8. Tensile properties of AISI304 steel with flat and serrated grain boundaries at 600 °C [14]
Grain boundary
typeTest temperature/
°CYield strength/
MPaTensile strength/
MPaElongation/
%Flat grain boundary 600 149 379 40.0 Serrated grain boundary 600 153 383 39.6 表 9 Inconel751合金在大氣及熱腐蝕環境中的蠕變性能[2]
Table 9. Creep properties of Inconel751 alloy in air and in a corrosive environment [2]
Grain boundary type Creep strength /MPa In air Corrosive environment 100 h 1000 h 100 h Flat grain boundary 255 149 68 Serrated grain boundary 273 196 153 259luxu-164 -
參考文獻
[1] Latief F H, Hong H U, Blanc T, et al. Influence of chromium content on microstructure and grain boundary serration formation in a ternary Ni?xCr?0.1C model alloy. Mater Chem Phys, 2014, 148(3): 1194 doi: 10.1016/j.matchemphys.2014.09.047 [2] Ye R Z, Chen G L. On the zigzag grain boundary in high temperature superalloys. Mater Mech Eng, 1985, 9(4): 1葉銳曾, 陳國良. 論高溫合金中的彎曲晶界——廣泛應用彎曲晶界熱處理工藝. 機械工程材料, 1985, 9(4):1 [3] Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ' phases in a high-performance nickel-based powder metallurgy superalloy. J Mater Eng, 2015, 43(6): 7 doi: 10.11868/j.issn.1001-4381.2015.06.002楊萬鵬, 胡本芙, 劉國權, 等. 高性能鎳基粉末高溫合金中γ'相形態致鋸齒晶界形成機理研究. 材料工程, 2015, 43(6):7 doi: 10.11868/j.issn.1001-4381.2015.06.002 [4] Koul A K, Gessinger G H. On the mechanism of serrated grain boundary formation in Ni-based superalloys. Acta Metall, 1983, 31(7): 1061 doi: 10.1016/0001-6160(83)90202-X [5] Wu X J, Koul A K. Grain boundary sliding at serrated grain boundaries. Adv Perform Mater, 1997, 4(4): 409 doi: 10.1023/A:1008648628507 [6] Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ' precipitates and grain. Metall Trans A, 1993, 24(8): 1733 doi: 10.1007/BF02657848 [7] Danflou H L, Macia M, Sanders T H, et al. Mechanisms of formation of serrated grain boundaries in nickel base superalloys // Superalloys 1996 (Eighth International Symposium). Atlanta, 1996: 119 [8] Mitchell R J, Li H Y, Huang Z W. On the formation of serrated grain boundaries and fan type structures in an advanced polycrystalline nickel-base superalloy. J Mater Process Technol, 2009, 209(2): 1011 doi: 10.1016/j.jmatprotec.2008.03.008 [9] Lu X D, Deng Q, Du J H, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy. J Alloys Compd, 2009, 477(1-2): 100 doi: 10.1016/j.jallcom.2008.10.088 [10] Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd, 2009, 486(1-2): 195 doi: 10.1016/j.jallcom.2009.07.020 [11] Jiang L, Hu R, Kou H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy. Mater Sci Eng A, 2012, 536: 37 doi: 10.1016/j.msea.2011.11.060 [12] Tang Y T, Karamched P, Liu J L, et al. Grain boundary serration in nickel alloy inconel 600: Quantification and mechanisms. Acta Mater, 2019, 181: 352 doi: 10.1016/j.actamat.2019.09.037 [13] Hong H U, Kim I S, Choi B G, et al. On the mechanism of serrated grain boundary formation in Ni-based superalloys with low γ' volume fraction // Superalloys 2012. Hoboken, 2012: 53 [14] Hong H U, Nam S W. Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel. J Mater Sci, 2003, 38(7): 1535 doi: 10.1023/A:1022989002179 [15] Hong H U, Jeong H W, Kim I S, et al. A study on the formation of serrated grain boundaries and its applications in nimonic 263. Mater Sci Forum, 2010, 638-642: 2245 doi: 10.4028/www.scientific.net/MSF.638-642.2245 [16] Kim K J, Ginsztler J, Nam S W. The role of carbon on the occurrence of grain boundary serration in an AISI 316 stainless steel during aging heat treatment. Mater Lett, 2005, 59(11): 1439 doi: 10.1016/j.matlet.2004.12.050 [17] Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater Sci Eng A, 2011, 530: 525 doi: 10.1016/j.msea.2011.10.014 [18] Ge Z Y, Yu W X, Yang L Y, et al. Research of zig-zag grain boundary universality in austenitic superalloys. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 51葛占英, 于文秀, 楊蓮隱, 等. 奧氏體型高溫合金彎曲晶界普遍性的研究. 北京鋼鐵學院學報, 1986, 8(增刊1): 51 [19] Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni?20Cr binary model alloy. Mater Charact, 2018, 135: 146 doi: 10.1016/j.matchar.2017.11.047 [20] Jeong C Y, Kim K J, Hong H U, et al. Effects of aging temperature and grain size on the formation of serrated grain boundaries in an AISI 316 stainless steel. Mater Chem Phys, 2013, 139(1): 27 doi: 10.1016/j.matchemphys.2012.11.021 [21] Hong H U, Nam S W. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel. Mater Sci Eng A, 2002, 332(1-2): 255 doi: 10.1016/S0921-5093(01)01754-3 [22] Kim K J, Hong H U, Nam S W. A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel. Mater Chem Phys, 2011, 126(3): 480 doi: 10.1016/j.matchemphys.2010.12.025 [23] Tan J F, Jang S R, Tian S F. Researches on wave grain boundaries heat treatment processes for gh220 alloy. J Aeronaut Mater, 1982, 10(Suppl 1): 19譚菊芬, 姜淑榮, 田世藩. GH220合金彎曲晶界熱處理制度的研究. 航空材料, 1982, 10(增刊1): 19 [24] Ge Z Y, Ye R Z, Sun J G, et al. Effect of alloying elements on zig-zag grain boundary in superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 61葛占英, 葉銳曾, 孫金貴, 等. 合金元素對GH220合金彎曲晶界的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 61 [25] Xu Z C, Ye R Z, Wang D, et al. Study on the formation of zig-zag grain boundary in 10Cr?15Co?Ni Ni-based superalloy. J Beijing Univ Iron Steel Technol, 1982, 4(Suppl 1): 78徐志超, 葉銳曾, 王迪, 等. 在10Cr?15Co?Ni基高溫合金中彎曲晶界形成的研究. 北京鋼鐵學院學報, 1982, 4(增刊1): 78 [26] Zhang X. Effect of Microalloyed Element Niobium on the Microstructure and Properties of Austenite-Based Weld Metals [Dissertation]. Hefei: University of Science and Technology of China, 2019張旭. 微合金元素鈮對奧氏體基焊縫金屬組織與性能的影響[學位論文]. 合肥: 中國科學技術大學, 2019 [27] Ye R Z, Xu Z C, Ge Z Y, et al. Mechanism of ziggag grain boundary formation in wrought nickelbase superalloys. J Beijing Univ Iron Steel Technol, 1985, 7(2): 29葉銳曾, 徐志超, 葛占英, 等. 鎳基變形高溫合金中的彎曲晶界形成的機制. 北京鋼鐵學院學報, 1985, 7(2):29 [28] Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Mater Charact, 2014, 96: 28 doi: 10.1016/j.matchar.2014.07.008 [29] Yamazaki M. The effect of two-step solution treatment on the creep rupture properties of a high carbon 18Cr-12Ni stainless steel. J Jpn Inst Met, 1966, 30: 1032 doi: 10.2320/jinstmet1952.30.11_1032山崎道夫. 高炭素18Cr?12Niステンレス鋼のクリープ破斷強さにおよぼす2段溶體化処理の影響. 日本金屬學會誌, 1966, 30:1032 doi: 10.2320/jinstmet1952.30.11_1032 [30] Wang L, Ye R Z, Zhou S L, et al. Research on formation rule of G.B. plate-like carbide in GH220 Ni-base wrought superalloy. J Univ Sci Technol Beijing, 1990, 12(3): 243汪林, 葉銳曾, 周守禮, 等. GH220合金中晶界針狀碳化物的成因. 北京科技大學學報, 1990, 12(3):243 [31] Li H, Xia S, Zhou B X, et al. Study of carbide precipitation at grain boundary in nickel base alloy 690. Acta Metall Sinica, 2011, 47(7): 853李慧, 夏爽, 周邦新, 等. 鎳基690合金中晶界碳化物析出的研究. 金屬學報, 2011, 47(7):853 [32] Zhong Z Y, Ma P L, Chen G S, et al. A study of zigzag grain boundary in high alloyed wrought nickel-base superalloy. Acta Met Sinica, 1983, 19(3): 54仲增墉, 馬培立, 陳淦生, 等. 高合金化鎳基變形高溫合金中彎曲晶界的初步研究. 金屬學報, 1983, 19(3):54 [33] Koul A K, Thamburaj R. Serrated grain boundary formation potential of Ni-based superalloys and its implications. Metall Trans A, 1985, 16(1): 17 doi: 10.1007/BF02656707 [34] Bhuyan P, Reddy K V, Pradhan S K, et al. A potential insight into the serration behaviour of Σ3n (n≤3) boundaries in Alloy 617. Mater Chem Phys, 2020, 248: 122919 doi: 10.1016/j.matchemphys.2020.122919 [35] Ye R Z, Ge Z Y, Wang Y Y, et al. Effect of zigzag grain boundary on creep rupture of a 10Cr?15Co?Ni?BASE wrought superalloy. Acta Metall Sinica, 1984, 20(1): 34葉銳曾, 葛占英, 王曰毅, 等. 彎曲晶界對10Cr?15Co?Ni基變形高溫合金蠕變斷裂的影響. 金屬學報, 1984, 20(1):34 [36] Xiang C J. Investigation into curved crystal boundary beheawiour of Ni?Cr?W?Mo alloy under creep fracture. J Sichuan Inst Technol, 1997, 16(4): 15向朝進. 彎曲晶界在 Ni?Cr?W?Mo 合金蠕變斷裂中的行為研究. 四川工業學院學報, 1997, 16(4):15 [37] Zhang Y P, Wang Y Y, Li Z Y, et al. The effect of zigzag grain boundaries on dislocation configurations of GH49 alloy in creep process. J Chongqing Univ Nat Sci Ed, 1988, 11(1): 97張亞平, 王曰毅, 李志云, 等. 彎曲晶界對GH49合金蠕變過程中位錯組態的影響. 重慶大學學報(自然科學版), 1988, 11(1):97 [38] Zhang Y P, Luo H, Wang Y Y, et al. The effect of zigzag grain boundaries on process of creep and fracture in GH49 alloy. J Chongqing Univ Nat Sci Ed, 1984, 7(3): 141張亞平, 羅虹, 王曰毅, 等. GH49合金在蠕變斷裂過程中彎曲晶界的作用. 重慶大學學報(自然科學版), 1984, 7(3):141 [39] Tanaka M, Miyagawa O, Sakaki T, et al. Creep rupture strength and grain-boundary sliding in austenitic 21Cr?4Ni?9Mn steels with serrated grain boundaries. J Mater Sci, 1988, 23(2): 621 doi: 10.1007/BF01174696 [40] Tanaka M, Iizuka H, Ashihara F. Effects of serrated grain boundaries on the crack growth in austenitic heat-resisting steels during high-temperature creep. J Mater Sci, 1988, 23(11): 3827 doi: 10.1007/BF01106799 [41] Tang Y T, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy inconel 600: Generation and effects on mechanical behavior. Metall Mater Trans A, 2018, 49(9): 4324 doi: 10.1007/s11661-018-4671-7 [42] Larson J M, Floreen S. Metallurgical factors affecting the crack growth resistance of a superalloy. Metall Trans A, 1977, 8(1): 51 doi: 10.1007/BF02677263 [43] Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity. Metall Trans A, 1976, 7(8): 1225 doi: 10.1007/BF02656607 [44] Raj R, Ashby M F. On grain boundary sliding and diffusional creep. Metall Trans, 1971, 2(4): 1113 doi: 10.1007/BF02664244 [45] Ge Z Y, Ye R Z, Sun J G, et al. Effect of zig-zag grain boundary on fatigue property of superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 69葛占英, 葉銳曾, 孫金貴, 等. 彎曲晶界對GH220合金疲勞性能的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 69 [46] Tanaka M. Evolution of grain-boundary serration in fatigue. J Mater Sci Lett, 1995, 14(6): 381 [47] Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy. Chin J Eng, 2019, 41(10): 1298田少鯤, 李靜媛, 張俊龍, 等. Sc對7056鋁合金組織和性能的影響. 工程科學學報, 2019, 41(10):1298 [48] Wu Z H, Qi Z C, Xu P P, et al. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets. Chin J Eng, 2020, 42(5): 620吳宗河, 祁梓宸, 許朋朋, 等. 熱軋7075/AZ31B復合板的顯微組織及結合性能. 工程科學學報, 2020, 42(5):620 [49] Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc)alloys. Chin J Eng, 2020, 42(5): 612王宇, 熊柏青, 李志輝, 等. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能. 工程科學學報, 2020, 42(5):612 [50] Zhang X F, Wan Y X, Wu X J, et al. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel. Chin J Eng, 2020, 42(8): 949章小峰, 萬亞雄, 武學俊, 等. Fe?Mn?(Al)?C高強韌性鋼氫脆微觀機制的研究進展. 工程科學學報, 2020, 42(8):949 [51] Yoshiba M, Miyagawa O. Effect of grain boundary serration on the fatigue, creep and cyclic creep strengths of a nickel-base superalloy in air and in hot corrosive environment. ISIJ Int, 1986, 26(1): 69 doi: 10.2355/isijinternational1966.26.69 [52] Bhuyan P, Pradhan S K, Mitra R, et al. Evaluating the efficiency of grain boundary serrations in attenuating high-temperature hot corrosion degradation in Alloy 617. Corros Sci, 2019, 149: 164 doi: 10.1016/j.corsci.2019.01.007 [53] Kim H P, Choi M J, Kim S W, et al. Effect of serrated grain boundary on stress corrosion cracking of Alloy 600. Nucl Eng Technol, 2018, 50(7): 1131 doi: 10.1016/j.net.2018.05.009 [54] Hong H U, Kim I S, Choi B G, et al. On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy. Metall Mater Trans A, 2012, 43(1): 173 doi: 10.1007/s11661-011-0837-2 -