-
摘要: 雙極板作為質子交換膜燃料電池(PEMFCs)的重要組成部件,對電池堆的重量、體積、效率、耐久度、成本起著決定性作用。目前,金屬板與石墨板電堆制備技術相對成熟,已經廣泛應用于商用車、乘用車領域,但復合雙極板的生產制造因原料配方未完全實現國產化、無法大批量流水線生產、成本較高等在我國仍未大批量投入市場,尋找低成本的原材料、優化原料配比及加工條件、縮短加工周期對復合雙極板的產業化具有重要意義。本文首先比較了金屬雙極板、石墨雙極板和復合雙極板的特點,介紹了復合雙極板的模壓工藝及優點,然后概述了碳基復合材料模壓雙極板的研究進展,包括以酚醛樹脂、環氧樹脂和乙烯基酯樹脂等熱固性樹脂為黏結劑的樹脂/石墨復合雙極板和炭黑、碳纖維、碳納米管增強復合雙極板,重點總結了原料種類、配比和成型工藝條件對雙極板性能的影響,最后梳理了復合雙極板的產業化現狀,提出國內外主要雙極板研發企業面臨的問題,并對復合雙極板的發展方向進行了展望。Abstract: Bipolar plates are significant components in proton exchange membrane fuel cells (PEMFCs), thus playing a decisive role in the weight, volume, efficiency, durability, and cost of battery stacks. At present, the preparation technologies of metal and graphite plate stacks have become relatively mature, and have been widely used in the fields of commercial and passenger vehicles. However, production of composite material bipolar plates has not been marketed on a large scale in China due to the incomplete localization of raw material formulation, absence of mass production lines and high production cost. Therefore, it is of great significance to find low-cost raw materials, screen raw material compositions and ratios, optimize processing conditions including molding temperature, pressure and time, and shorten the processing cycle for the industrialization of composite bipolar plates. In this review, the characteristics of metal bipolar plates, graphite bipolar plates and composite material bipolar plates were compared. Moreover, the molding process and its advantages in composite bipolar plate production were introduced. Subsequently, recent progress in research of carbon-based composite molded bipolar plates was summarized. This includes resin/graphite composite bipolar plates using thermosetting resins such as phenol formaldehyde resin, epoxy resin and vinyl ester resin as the binder, and carbon black, carbon fiber and carbon nanotube reinforced composite bipolar plates. The effects of the types and ratios of raw materials and molding process conditions on the performance of bipolar plates were emphasized. Finally, the industrialization status of composite bipolar plates was discussed, and the problems faced by major composite bipolar plate manufacturers at home and abroad were pointed out. Prospects in the development of composite bipolar plates were also explored. Additionally, unified performance test standards for composite bipolar plates were recommended to make the performance of products developed by different enterprises comparable.
-
圖 1 石墨板與不同甲醇含量(質量分數)的酚醛樹脂的接觸角圖像(a~e)及接觸角與甲醇含量的關系曲線(f)。(a)酚醛樹脂(甲醇含量0%);(b)甲醇(甲醇含量100%);(c)含25%甲醇的酚醛樹脂;(d)含33%甲醇的酚醛樹脂;(e)含50%甲醇的酚醛樹脂[29]
Figure 1. Contact angle images of graphite plate and phenolic resin mixtures with different mass fractions of methanol (a–e) and contact angles as function of methanol content (f): (a) phenolic resin (0% methanol); (b) methanol (0% methanol); (c?e) phenolic resin mixtures with the methanol content of 25% (c), 33% (d) and 50% (e)[29]
圖 7 石墨顆粒、炭黑、碳纖維、碳納米管增強復合雙極板導電性與力學性能原理圖。(a)膨脹石墨為唯一導電介質時復合雙極板的導電通路;(b)添加石墨顆粒、炭黑、碳纖維、碳納米管時復合雙極板的導電通路;(c)改性碳纖維/碳納米管表面官能團與樹脂官能團形成共價鍵
Figure 7. Schematic for the reinforced conductivity and mechanical properties of composite bipolar plate by graphite particles, carbon black, carbon fiber and carbon nanotube: (a) conductive path of composite bipolar plate using expanded graphite as the only conductive medium (b) adding graphite particles, carbon black, carbon fiber and carbon nanotubes; (c) the form of covalent bonds between surface functional groups of modified carbon fiber/carbon nanotube and those of resin
表 1 國內外主要企業研發的復合雙極板的性能
Table 1. Performances of composite bipolar plates produced by main domestic and foreign enterprises
Performance Jiangsu Shenzhou Carbon Products Co., Ltd. Wuhan Himalaya Optoelectronics Technology Co., Ltd Huizhou Hailong Mold Plastic Products Co., Ltd. Huizhou Duke New Material Co., Ltd. Foshan Nanhai Baotan Graphite Products Co., Ltd. Ensinger, Germany Bulk density/(g·cm?3) ≥1.85 1.8–1.95 — — 1.89 2 Conductivity/(S·cm?1) — — 220 >300 95 142 Resistivity/(μΩ·m) ≤40 16 — — — 70.4 Compressive strength /
MPa≥80 >50 >55 >100 70 — Flexural strength/MPa ≥40 >51 >45 >40 45 40 Shore hardness, HS ≥30 48–51 — — — — Proper temperature/℃ ?4–200 — >120 ?55–150 — 200–240 Contact resistance /
(mΩ·cm2)— — <8 <6 — — Corrosion current density/(μA·cm?2) — — ≤0.5 <0.5 — — Gas permeability/ [cm3·(s·cm2·Pa)?1] — — <1.3×10?14 3.76×10?12 — — Porosity/% ≤0.2 ≤0.12 — — — — 259luxu-164 -
參考文獻
[1] Li W, Li Z X, Liu L T, et al. Research progress on surface modification of metal bipolar plate for proton exchange membrane fuel cell. Surf Technol, 2018, 47(10): 81李偉, 李爭顯, 劉林濤, 等. 質子交換膜燃料電池金屬雙極板表面改性研究進展. 表面技術, 2018, 47(10):81 [2] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22 [3] Zhong X H, Chen L L, Han J W, et al. Overview of present situation and technologies for the recovery of spent lithium-ion batteries. Chin J Eng, 2021, 43(2): 161鐘雪虎, 陳玲玲, 韓俊偉, 等. 廢舊鋰離子電池資源現狀及回收利用. 工程科學學報, 2021, 43(2):161 [4] Bao D Y. Research progress of proton exchange membrane fuel cell. High Technol Industuialigation, 1994(Sup1): 4鮑德佑. 質子交換膜燃料電池的研究開發進展. 高科技與產業化, 1994(增刊1): 4 [5] Wang Y, Yuan H, Martinez A, et al. Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives. Adv Appl Energy, 2021, 2: 100011 doi: 10.1016/j.adapen.2021.100011 [6] Wang X J, Chen M. Comparison of energy consumption and usage cost between new energy vehicles and traditional vehicles based on linear regression analysis // The 13th (2018) China Management Academic Annual Conference. Hangzhou, 2018: 442王曉佳, 陳咪. 基于線性回歸分析的新能源汽車與傳統汽車能耗與使用成本比較研究//第十三屆(2018)中國管理學年會. 杭州, 2018: 442 [7] Samu A, Pertti K, Jari I, et al. Bipolar Plate, Method for Producing Bipolar Plate and PEM Fuel Cell: United State Patent, EP20090142645.2009-6-4 [8] Han Y T, Zhang P C, Shi J F, et al. Surface modification of TA1 bipolar plate for proton exchange membrane fuel cell. J Chin Soc Corros Prot, 2021, 41(1): 125韓月桐, 張鵬超, 史杰夫, 等. 質子交換膜燃料電池中TA1雙極板的表面改性研究. 中國腐蝕與防護學報, 2021, 41(1):125 [9] Song Y, Zhang C, Ling C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int J Hydrog Energy, 2020, 45(54): 29832 doi: 10.1016/j.ijhydene.2019.07.231 [10] Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review. Int J Hydrog Energy, 2005, 30(12): 1297 doi: 10.1016/j.ijhydene.2005.04.016 [11] Renata W. Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells? ?A review. Funct Mater Lett, 2019, 12(2): 1930001 doi: 10.1142/S1793604719300019 [12] Fan R L, Peng Y H, Tian H, et al. Graphite-filled composite bipolar plates for fuel cells: material, structure, and performance. Acta Phys-Chim Sin, https://doi.org/10.3866/PKU.WHXB202009095.樊潤林, 彭宇航, 田豪, 等. 燃料電池復合石墨雙極板基材的研究進展: 材料、結構與性能. 物理化學學報, https://doi.org/10.3866/PKU.WHXB202009095. [13] Kamarudin S K, Daud W R W, Md Som A, et al. Technical design and economic evaluation of a PEM fuel cell system. J Power Sources, 2006, 157(2): 641 doi: 10.1016/j.jpowsour.2005.10.053 [14] Kang Q P, Zhang G Q, Liu Y Q, et al. Research progress of composite bipolar plates for proton exchange membrane fuel cells. J North Univ China Nat Sci Ed, 2019, 40(5): 414康啟平, 張國強, 劉艷秋, 等. 質子交換膜燃料電池復合材料雙極板研究進展. 中北大學學報(自然科學版), 2019, 40(5):414 [15] Zhao Q P, Mu Z X, Zhang B, et al. Research progress of bipolar plate material for proton exchange membrane fuel cell. New Chem Mater, 2019, 47(11): 52趙秋萍, 牟志星, 張斌, 等. 質子交換膜燃料電池雙極板材料研究進展. 化工新型材料, 2019, 47(11):52 [16] Kang K, Park S, Ju H. Effects of type of graphite conductive filler on the performance of a composite bipolar plate for fuel cells. Solid State Ionics, 2014, 262: 332 doi: 10.1016/j.ssi.2013.11.024 [17] Ji X Y, Li A J, Wang W Q, et al. Review of study on preparation and performance of resin/graphite PEMFC bipolar plates. Mater Rev, 2013, 27(17): 87 doi: 10.3969/j.issn.1005-023X.2013.17.018冀曉燕, 李愛菊, 王威強, 等. 樹脂/石墨PEMFC雙極板的制備工藝與性能研究綜述. 材料導報, 2013, 27(17):87 doi: 10.3969/j.issn.1005-023X.2013.17.018 [18] Zhang S W, Wan Z P, Shen Y Q, et al. Fabrication of graphite composite bipolar plate for miniature PEMFCs by micro planing with multi-cutter. Key Eng Mater, 2013, 589-590: 617 doi: 10.4028/www.scientific.net/KEM.589-590.617 [19] Kakati B K, Sathiyamoorthy D, Verma A. Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell. Int J Hydrog Energy, 2010, 35(9): 4185 doi: 10.1016/j.ijhydene.2010.02.033 [20] Minke C, Hickmann T, dos Santos A R, et al. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries. J Power Sources, 2016, 305: 182 doi: 10.1016/j.jpowsour.2015.11.052 [21] Hu B, Xiang L Y, He G J. Research progress in PEMFC polymer/conductive filler composite material bipolar plates. China Plast Ind, 2020, 48(Sup1): 26胡斌, 項林憶, 何光建. 質子交換膜燃料電池用聚合物/導電填料復合材料雙極板的研究進展. 塑料工業, 2020, 48(增刊1): 26 [22] Cunningham B D, Huang J, Baird D G. Review of materials and processing methods used in the production of bipolar plates for fuel cells. Int Mater Rev, 2007, 52(1): 1 doi: 10.1179/174328006X102556 [23] Li X Y, Ren Y, Gan W J. Progress in toughening thermosetting resins. Thermosetting Resin, 2010, 25(5): 41李曉燕, 任圓, 甘文君. 熱固性樹脂的增韌進展. 熱固性樹脂, 2010, 25(5):41 [24] Chen J, Ma C L, Liu B, et al. Research progress of thermosetting resins and their curing agents. Plast Sci Technol, 2019, 47(2): 95陳杰, 馬春柳, 劉邦, 等. 熱固性樹脂及其固化劑的研究進展. 塑料科技, 2019, 47(2):95 [25] Simaafrookhteh S, Khorshidian M, Momenifar M. Fabrication of multi-filler thermoset-based composite bipolar plates for PEMFCs applications: Molding defects and properties characterizations. Int J Hydrog Energy, 2020, 45(27): 14119 doi: 10.1016/j.ijhydene.2020.03.105 [26] Yao K, Adams D, Hao A, et al. Highly conductive and strong graphite-phenolic resin composite for bipolar plate applications. Energy Fuels, 2017, 31(12): 14320 doi: 10.1021/acs.energyfuels.7b02678 [27] Yin Q, Li A J, Sun K N, et al. Study of PF resin/graphite composite for bipolar plate. J Synth Cryst, 2007, 36(4): 807 doi: 10.3969/j.issn.1000-985X.2007.04.020陰強, 李愛菊, 孫康寧, 等. 酚醛樹脂/石墨雙極板復合材料的實驗研究. 人工晶體學報, 2007, 36(4):807 doi: 10.3969/j.issn.1000-985X.2007.04.020 [28] Jiang B Y, Stübler N, Wu W Q, et al. Manufacturing and characterization of bipolar fuel cell plate with textile reinforced polymer composites. Mater Des, 2015, 65: 1011 doi: 10.1016/j.matdes.2014.10.044 [29] Kang S J, Kim D O, Lee J H, et al. Solvent-assisted graphite loading for highly conductive phenolic resin bipolar plates for proton exchange membrane fuel cells. J Power Sources, 2010, 195(12): 3794 doi: 10.1016/j.jpowsour.2009.11.064 [30] Mathur R B, Dhakate S R, Gupta D K, et al. Effect of different carbon fillers on the properties of graphite composite bipolar plate. J Mater Process Technol, 2008, 203(1-3): 184 doi: 10.1016/j.jmatprotec.2007.10.044 [31] Chen H, Liu H B, Yang L, et al. Effects of resin type on properties of graphite/polymer composite bipolar plate for proton exchange membrane fuel cell. J Mater Res, 2011, 26(23): 2974 doi: 10.1557/jmr.2011.358 [32] Luo X K. Study on the Bipolar Plate of Expanded Graphite of Proton Exchange Membrance Fuel Cells [Dissertation]. Dalian: Dalian University of Technology, 2017羅曉寬. 質子交換膜燃料電池膨脹石墨雙極板研究[學位論文]. 大連: 大連理工大學, 2017 [33] Wang C G, Wu H, Guo S Y. Preparation of vinyl ester resin/graphite composite for bipolar plate. Polym Mater Sci Eng, 2014, 30(8): 125王成國, 吳宏, 郭少云. 乙烯基酯樹脂/石墨雙極板復合材料的制備. 高分子材料科學與工程, 2014, 30(8):125 [34] Wu Q, Li J, Zhang P L. Effect of curing agent content on properties of vinyl ester resin/carbon fiber composites. J Hubei Univ Automot Technol, 2019, 33(4): 68吳晴, 李建, 張鵬磊. 固化劑對乙烯基酯樹脂/碳纖維復合材料性能的影響. 湖北汽車工業學院學報, 2019, 33(4):68 [35] Kim M, Choe J, Lim J W, et al. Manufacturing of the carbon/phenol composite bipolar plates for PEMFC with continuous hot rolling process. Compos Struct, 2015, 132: 1122 doi: 10.1016/j.compstruct.2015.07.038 [36] Lee D, Lim J W, Lee D G. Cathode/anode integrated composite bipolar plate for high-temperature PEMFC. Compos Struct, 2017, 167: 144 doi: 10.1016/j.compstruct.2017.01.080 [37] Lee H, Han K. Effect of surface-modified carbon fiber on the mechanical properties of carbon/epoxy composite for bipolar plate of PEMFC. Transctions Korean Hydrog New Energy Soc, 2020, 31(1): 49 doi: 10.7316/KHNES.2020.31.1.49 [38] Zhang X P. Preparation and Study of Vinyl Ester Resin/ Modified Carbon Fiber Composites [Dissertation]. Changchun: Changchun University of Technology, 2016張修平. 乙烯基酯樹脂/改性碳纖維復合材料制備及性能研究[學位論文]. 長春: 長春工業大學, 2016 [39] Yu H N, Lim J W, Suh J D, et al. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell. J Power Sources, 2011, 196(23): 9868 doi: 10.1016/j.jpowsour.2011.06.102 [40] Antunes R A, de Oliveira M C L, Ett G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J Power Sources, 2011, 196(6): 2945 doi: 10.1016/j.jpowsour.2010.12.041 [41] Liu J H, Wu Y, Lü H Y, et al. Research progress on conductive polymer filled with carbon black. Guangzhou Chem Ind, 2020, 48(9): 19劉家好, 吳赟, 呂海洋, 等. 炭黑填充型導電高分子材料的研究進展. 廣州化工, 2020, 48(9):19 [42] Lim J W. Development of carbon composite bipolar plates for PEMFC. Compos Res, 2019, 32(5): 222 [43] Gautam R K, Kar K K. Synergistic effects of carbon fillers of phenolic resin based composite bipolar plates on the performance of PEM fuel cell. Fuel Cells, 2016, 16(2): 179 doi: 10.1002/fuce.201500051 [44] Yin Q. Fabrication and Properties of Carbon Nanotubes Reinforced Phenol Formaldehyde Resin/Graphite Composite for Bipolar Plate [Dissertation]. Jinan: Shandong University, 2008陰強. 碳納米管增強酚醛樹脂/石墨雙極板復合材料的制備與性能研究[學位論文]. 濟南: 山東大學, 2008 -