<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鹵鹽載體無機鹽阻化煤自燃的機理及性能

張嬿妮 侯云超 劉博 鄧軍 劉春輝 楊晶晶 溫心宇

張嬿妮, 侯云超, 劉博, 鄧軍, 劉春輝, 楊晶晶, 溫心宇. 鹵鹽載體無機鹽阻化煤自燃的機理及性能[J]. 工程科學學報, 2021, 43(10): 1295-1303. doi: 10.13374/j.issn2095-9389.2020.12.25.001
引用本文: 張嬿妮, 侯云超, 劉博, 鄧軍, 劉春輝, 楊晶晶, 溫心宇. 鹵鹽載體無機鹽阻化煤自燃的機理及性能[J]. 工程科學學報, 2021, 43(10): 1295-1303. doi: 10.13374/j.issn2095-9389.2020.12.25.001
ZHANG Yan-ni, HOU Yun-chao, LIU Bo, DENG Jun, LIU Chun-hui, YANG Jing-jing, WEN Xin-yu. Mechanism and performance of coal spontaneous combustion with a halide carrier inorganic salt inhibitor[J]. Chinese Journal of Engineering, 2021, 43(10): 1295-1303. doi: 10.13374/j.issn2095-9389.2020.12.25.001
Citation: ZHANG Yan-ni, HOU Yun-chao, LIU Bo, DENG Jun, LIU Chun-hui, YANG Jing-jing, WEN Xin-yu. Mechanism and performance of coal spontaneous combustion with a halide carrier inorganic salt inhibitor[J]. Chinese Journal of Engineering, 2021, 43(10): 1295-1303. doi: 10.13374/j.issn2095-9389.2020.12.25.001

鹵鹽載體無機鹽阻化煤自燃的機理及性能

doi: 10.13374/j.issn2095-9389.2020.12.25.001
基金項目: 國家重點研發計劃資助項目(2018YFC0807900); 國家自然科學基金資助項目(51674191)
詳細信息
    通訊作者:

    E-mail: zyn2099@xust.edu.cn

  • 中圖分類號: TD752.2

Mechanism and performance of coal spontaneous combustion with a halide carrier inorganic salt inhibitor

More Information
  • 摘要: 為了研究鹵鹽載體無機鹽阻化劑對煤自燃的阻化機理及性能,采用差示掃描量熱儀(DSC)測試了在稀土水滑石、MgCl2和鹵鹽載體無機鹽三種不同阻化劑作用下,煤自燃過程中分階段特征、特征溫度、熱效應和表觀活化能等參數變化規律。測試結果表明,稀土水滑石層板的?OH能夠與煤分子中的?COOH等酸性官能團產生弱氫鍵,造成?COOH等酸性官能團的活性減弱;Mg2+與煤分子中的—COO?發生絡合作用,生成了?COOMg?,造成?COO?內的 C=O活性減弱是鹵鹽載體無機鹽抑制煤自燃的主要機理。煤樣中添加鹵鹽載體無機鹽后DSC曲線吸熱峰均出現雙峰或多峰,且較原煤的峰值溫度后移了50~60 ℃、T1溫度后移了90~100 ℃、總放熱量降低了19~27 kJ?g?1,而且有效的提高了煤體各階段的表觀活化能。研究表明鹵鹽載體無機鹽阻化劑可有效抑制煤自燃反應進程。

     

  • 圖  1  試驗樣品掃描電鏡照片。(a)試驗樣品1;(b)試驗樣品2;(c)試驗樣品7;(d)試驗樣品8

    Figure  1.  Test sample SEM: (a) sample 1; (b) sample 2; (c) sample 7; (d) sample 8

    圖  2  試驗樣品EDS圖。(a)試驗樣品1;(b)試驗樣品2;(c)試驗樣品7;(d)試驗樣品8

    Figure  2.  Test sample EDS: (a) sample 1; (b) sample 2; (c) sample 7; (d) sample 8

    圖  3  試驗樣品熱釋放速率曲線圖。(a)試驗樣品1~6;(b)試驗樣品7~12

    Figure  3.  Curve of the heat release rate of the test sample: (a) sample 1–6; (b) sample 7–12

    圖  4  各樣品熱釋放速率曲線圖。(a)試驗樣品1;(b)試驗樣品2;(c)試驗樣品3;(d)試驗樣品4;(e)試驗樣品5;(f)試驗樣品6;(g)試驗樣品7;(h)試驗樣品8;(i)試驗樣品9;(j)試驗樣品10;(k)試驗樣品11;(l)試驗樣品12

    Figure  4.  Heat release rate curve: (a) sample 1;(b) sample 2;(c) sample 3;(d) sample 4; (e) sample 5;(f) sample 6;(g) sample 7;(h) sample 8; (i) sample 9;(j) sample 10;(k) sample 11;(l) sample 12

    圖  5  試驗樣品緩慢放熱階段表觀活化能曲線。(a)試驗樣品1;(b)試驗樣品7

    Figure  5.  Apparent activation energy curve of the test sample during the slow heat release stage: (a) sample 1; (b) sample 7

    圖  6  試驗樣品快速放熱階段表觀活化能曲線。(a)試驗樣品1;(b)試驗樣品7

    Figure  6.  Apparent activation energy curve of the test sample during the rapid heat release stage: (a) sample 1; (b) sample 7

    表  1  煤的工業分析與元素分析(質量分數)

    Table  1.   Industrial analysis and element analysis of coal %

    Proximate analysis Ultimate analysis
    MadAadVadFCadCdafHdafNdaOdaSdaf
    4.6615.8432.8846.6276.043.950.6819.250.08
    下載: 導出CSV

    表  2  阻化劑配制成分表(質量分數)

    Table  2.   Composition list of the inhibitor %

    SampleRare earth
    hydrotalcite
    H2O SampleMgCl2Rare earth hydrotalciteH2O
    10100 720080
    2199 820179
    3397920377
    45951020575
    57931120773
    69911220971
    下載: 導出CSV

    表  3  試驗樣品在不同氧化階段的放熱量

    Table  3.   Heat release of test samples at different oxidation stages

    SampleTotal heat released/
    (J?mg?1)
    Total heat absorbed
    (heat absorption stage)/
    (J?mg?1)
    Slow heat release stage Rapid heat release stage
    Heat released/
    (J?mg?1)
    Percentage of total
    heat released /%
    Heat released/
    (J?mg?1)
    Percentage of total
    heat released /%
    174.311.7229.4939.6944.8260.31
    288.761.630.0233.8258.7466.18
    398.60.1225.4625.8273.1474.17
    494.480.1321.6822.9472.877.05
    5103.830.3127.3726.3676.4673.64
    698.130.4833.5334.1764.665.83
    763.091.1719.2230.4643.8769.53
    849.171.0615.6331.7933.5468.21
    953.311.0816.1830.3537.1369.65
    1055.371.617.7332.0237.6467.98
    1147.111.7716.0634.0931.0565.91
    1248.682.3116.1833.2432.566.76
    下載: 導出CSV

    表  4  緩慢放熱階段表觀活化能參數

    Table  4.   Apparent activation energy parameters in the slow heat release stage

    SampleFitting linear
    equation
    Apparent activation
    energy, E /
    (J·mol–1)
    Correlation
    coefficient,
    R2
    1y=?3392.23468x+3.4789628203.03910.97832
    2y=?4771.26045x+7.2090539668.259380.95058
    3y=?3677.22585x+4.1012330572.455720.96386
    4y=?3994.97463x+4.9155633214.219070.97228
    5y=?4037.2746x+4.8416233565.901020.9789
    6y=?4163.42638 x+5.2445534614.726920.98845
    7y=?6428.62213x+9.0433553447.564390.9187
    8y=?5443.14126x+7.6278245254.276440.99003
    9y=?6140.78185x+9.0388851054.46030.98428
    10y=?6653.1257x+ 9.9178255314.087070.95261
    11y=?5802.11937x+8.2513148238.820440.98814
    12y=?5623.12086 x+ 8.0400446750.626830.9913
    下載: 導出CSV

    表  5  快速放熱階段活化能參數

    Table  5.   Apparent activation energy parameters in the rapid heat release stage

    SampleFitting linear
    equation
    Apparent activation
    energy, E /
    (J·mol–1)
    Correlation
    coefficient,
    R2
    1y=?6881.26298x+7.8917857210.820420.90249
    2y=?9425.37165x+11.8243178362.53990.98207
    3y=?8808.86618x+10.819473236.913420.96555
    4y=?7816.14674x+9.3328464983.4440.9513
    5y=?7140.95942x+8.3235959369.936450.93582
    6y=?7994.84827x+9.565166469.168520.94128
    7y=?9377.78707x+11.7349977966.92170.97704
    8y=?10237.40606x+12.9407685113.793980.95442
    9y=?8923.61423x+10.9061774190.928710.94638
    10y=?10153.61359x+12.8517884417.143390.9656
    11y=?10102.1723x+12.8169483989.46050.9858
    12y=?10299.87431x+13.1300385633.155010.96873
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang Y N, Chen L, Zhao J Y, et al. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature-programmed oil bath experimental system. J Loss Prev Process Ind, 2019, 60: 17 doi: 10.1016/j.jlp.2019.03.007
    [2] Zhang Y N, Hou Y C, Zhao J Y, et al. Heat release characteristic of key functional groups during low-temperature oxidation of coal. Combust Sci Technol, 2020: 1
    [3] Zhao J Y, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy, 2019, 181: 136 doi: 10.1016/j.energy.2019.05.158
    [4] Guo W J. Experimental test and examination of the influential factors of the coal spontaneous combustion. J Saf Environ, 2018, 18(4): 1307

    郭文杰. 煤自燃特性影響因素的試驗研究. 安全與環境學報, 2018, 18(4):1307
    [5] Zhu H T, Li Y N, Zhai Q Y, et al. Preparation and performance research of hydrotalcites containing rare earth element. Henan Chem Ind, 2019, 36(7): 15

    朱洪濤, 李巖娜, 翟秋月, 等. 稀土元素類水滑石的制備及其性能研究. 河南化工, 2019, 36(7):15
    [6] Liu Y Z, Duan T X, Deng Q, et al. Preparation of calcined hydrotalcite and adsorption of Cr(VI). Guangzhou Chem Ind, 2020, 48(15): 109 doi: 10.3969/j.issn.1001-9677.2020.15.035

    劉奕禎, 段天欣, 鄧仟, 等. 焙燒水滑石的制備及其吸附Cr(VI)的研究. 廣州化工, 2020, 48(15):109 doi: 10.3969/j.issn.1001-9677.2020.15.035
    [7] Pang Y Q, Zhang Q. Research of inhibitor suppression on coal spontaneous combustion by magnesium chloride. Datong Coal Sci Technol, 2020(3): 51

    龐葉青, 張奇. 阻化劑氯化鎂抑制煤自燃的實驗研究. 同煤科技, 2020(3):51
    [8] Xu H Y. Experimental study of thermogravimetric kinetics on the composite inhibitor for inhibiting coal spontaneous combustion. Min Res Dev, 2019, 39(6): 79

    許紅英. 復合阻化劑抑制煤自燃的熱重動力學實驗研究. 礦業研究與開發, 2019, 39(6):79
    [9] Ma D J, Tang Y B. Influence of associated metal elements in coal on low-temperature oxidation characteristics of coal. Coal Sci Technol, 2019, 47(2): 203

    馬冬娟, 唐一博. 煤中伴生金屬元素對煤低溫氧化特性的影響. 煤炭科學技術, 2019, 47(2):203
    [10] Wang F S, Wang J T, Dong X W, et al. Experimental research on resistance characteristics of hypophosphite to coal spontaneous combustion. Saf Coal Mines, 2020, 51(5): 45

    王福生, 王建濤, 董憲偉, 等. 次磷酸鹽對煤自燃的阻化特性實驗研究. 煤礦安全, 2020, 51(5):45
    [11] Jin Y F, Li Y H, Liu B. Research on inhibiting effects of LDHs on coal spontaneous combustion. Coal Technol, 2017, 36(10): 101

    金永飛, 李毅恒, 劉博. 稀土類水滑石的煤自燃阻化效果研究. 煤炭技術, 2017, 36(10):101
    [12] Yang J X, Bai Z J. Experimental study on inhibition characteristic of LDHs inhibitor to bituminous coal. Saf Coal Mines, 2018, 49(8): 35

    楊計先, 白祖錦. LDHs阻化劑對煙煤的阻化特性實驗研究. 煤礦安全, 2018, 49(8):35
    [13] Zhou X, Yuan H K, He P, et al. Effect of surface modifier on properties of Zn?Mg?Al hydrotalcites as heat stabilizer. Fine Chem, 2018, 35(8): 1389

    周喜, 袁浩坤, 何鵬, 等. 表面改性劑對Zn?Mg?Al水滑石熱穩定劑性能影響. 精細化工, 2018, 35(8):1389
    [14] Wu W R, Liu T, Liu Z H, et al. Research progress of coal self ignition inhibitor. Appl Chem Ind, 2017, 46(2): 356

    武衛榮, 劉濤, 劉振輝, 等. 煤自燃阻化劑的研究進展. 應用化工, 2017, 46(2):356
    [15] Zhang Y T, Shi X Q, Li Y Q, et al. Inhibiting effects of Zn/Mg/Al layer double hydroxide on coal spontaneous combustion. J China Coal Soc, 2017, 42(11): 2892

    張玉濤, 史學強, 李亞清, 等. 鋅鎂鋁層狀雙氫氧化物對煤自燃的阻化特性. 煤炭學報, 2017, 42(11):2892
    [16] Li J H, Wang B, Zhang A S, et al. Research on inhibition effect of halogen inhibitor on coal seam of Guotun Coal Mine. Coal Chem Ind, 2020, 43(5): 142

    李進海, 王兵, 張安山, 等. 鹵鹽阻化劑對郭屯煤礦煤層的阻化效果研究. 煤炭與化工, 2020, 43(5):142
    [17] Dong X W, Ai Q X, Wang F S, et al. Research on thermal characteristics in the process of coal oxidation inhibition. J Saf Sci Technol, 2016, 12(4): 70

    董憲偉, 艾晴雪, 王福生, 等. 煤氧化阻化過程中的熱特性研究. 中國安全生產科學技術, 2016, 12(4):70
    [18] Zhou K Q, Gao R, Qian X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J Hazard Mater, 2017, 338: 343 doi: 10.1016/j.jhazmat.2017.05.046
    [19] Wu B, Lou P, Wang C. Analysis of coal spontaneous combustion control by inhibitor. China Coal, 2014, 40(6): 117 doi: 10.3969/j.issn.1006-530X.2014.06.031

    吳兵, 婁鵬, 王超. 阻化劑防治煤自燃效果分析. 中國煤炭, 2014, 40(6):117 doi: 10.3969/j.issn.1006-530X.2014.06.031
    [20] Zheng L F. Test and analysis on salty retardants performance to restrain coal oxidized spontaneous combustion. Coal Sci Technol, 2010, 38(5): 70

    鄭蘭芳. 抑制煤氧化自燃的鹽類阻化劑性能分析. 煤炭科學技術, 2010, 38(5):70
    [21] Li X P, Chen Y G, Zhang J S, et al. Study on the inhibition effect of chlorine salt composite inhibitor on spontaneous combustion of different coal samples. Coal Eng, 2020, 52(2): 106

    李緒萍, 陳映光, 張金山, 等. 氯鹽復合阻化劑對不同煤樣自燃阻化效果的研究. 煤炭工程, 2020, 52(2):106
    [22] Yang Y. Mechanism and Performance of Inhibitor Based on Oxidation Characteristic of the Spontaneous Combustion of Coal [Dissertation]. Xi’an: Xi’an University of Science and Technology, 2015

    楊漪. 基于氧化特性的煤自燃阻化劑機理及性能研究[學位論文]. 西安: 西安科技大學, 2015
    [23] Zhang X H, Ding F, Zhang Y T, et al. Experimental study on LDHs composite inhibitor to coal resistance property. Coal Sci Technol, 2017, 45(1): 84

    張辛亥, 丁峰, 張玉濤, 等. LDHs復合阻化劑對煤阻化性能的試驗研究. 煤炭科學技術, 2017, 45(1):84
    [24] Duan Z Y, Wang F. Influence of MgCl2 on initial oxidation and secondary oxidation of coal. Saf Coal Mines, 2017, 48(6): 13

    段志勇, 王飛. MgCl2對煤一次氧化與二次氧化影響的實驗研究. 煤礦安全, 2017, 48(6):13
    [25] Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139

    趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數:  566
  • HTML全文瀏覽量:  315
  • PDF下載量:  30
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-25
  • 網絡出版日期:  2021-01-29
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回