[1] |
Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy. Adv Sci, 2020, 7(19): 2001480 doi: 10.1002/advs.202001480
|
[2] |
Li S, Huang P, Wang F. Achieving pronounced β-relaxations and improved plasticity in CuZr metallic glass. J Alloys Compd, 2021, 850: 156774 doi: 10.1016/j.jallcom.2020.156774
|
[3] |
Li Q, Shang Z X, Sun X, et al. High-strength and tunable plasticity in sputtered Al–Cr alloys with multistage phase transformations. Int J Plast, 2021, 137: 102915 doi: 10.1016/j.ijplas.2020.102915
|
[4] |
Gao M H, Zhang S D, Yang B J, et al. Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy. Appl Surf Sci, 2020, 530: 147211 doi: 10.1016/j.apsusc.2020.147211
|
[5] |
Gu J L, Lu S Y, Shao Y, et al. Segregating the homogeneous passive film and understanding the passivation mechanism of Ti-based metallic glasses. Corros Sci, 2021, 178: 109078 doi: 10.1016/j.corsci.2020.109078
|
[6] |
Sohrabi N, Panikar R S, Jhabvala J, et al. Laser coating of a Zr-based metallic glass on an aluminum substrate. Surf Coat Technol, 2020, 400: 126223 doi: 10.1016/j.surfcoat.2020.126223
|
[7] |
Tian L, Yang Y Q, Meyer T, et al. Environmental transmission electron microscopy study of hydrogen charging effect on a Cu–Zr metallic glass. Mater Res Lett, 2020, 8(12): 439 doi: 10.1080/21663831.2020.1791273
|
[8] |
Sarac B, Zadorozhnyy V, Ivanov Y P, et al. Surface-governed electrochemical hydrogenation in FeNi-based metallic glass. J Power Sources, 2020, 475: 228700 doi: 10.1016/j.jpowsour.2020.228700
|
[9] |
Huang H, Zhang Y. High-entropy alloy and metallic glass flexible materials. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.08.31.003黃浩, 張勇. 高熵合金與非晶合金柔性材料. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.08.31.003
|
[10] |
Hou L, Li M R, Jiang C, et al. Thermal and magnetic properties of Fe(Co)BCCu amorphous alloys with high saturation magnetization of 1.77 T. J Alloys Compd, 2021, 853: 157071 doi: 10.1016/j.jallcom.2020.157071
|
[11] |
Li F M, Feng J Q, Yi J, et al. Magnetocaloric properties of LaFe11.4Si1.6 based amorphous alloys. J Alloys Compd, 2020, 845: 156191 doi: 10.1016/j.jallcom.2020.156191
|
[12] |
Nosenko A V, Kyrylchuk V V, Semen’Ko M P, et al. Soft magnetic cobalt based amorphous alloys with low saturation induction. J Magn Magn Mater, 2020, 515: 167328 doi: 10.1016/j.jmmm.2020.167328
|
[13] |
Cheng J Y, Li T, Ullah S, et al. Giant magnetocaloric effect in nanostructured Fe–Co–P amorphous alloys enabled through pulse electrodeposition. Nanotechnology, 2020, 31(38): 385704 doi: 10.1088/1361-6528/ab9971
|
[14] |
Jia Z, Jiang J L, Sun L G, et al. Role of boron in enhancing electron delocalization to improve catalytic activity of Fe-based metallic glasses for persulfate-based advanced oxidation. ACS Appl Mater Interfaces, 2020, 12(40): 44789 doi: 10.1021/acsami.0c13324
|
[15] |
Kassa S T, Hu C C, Keshebo D L, et al. Surface modification of high-rejection ultrafiltration membrane with antifouling capability using activated oxygen treatment and metallic glass deposition. Appl Surf Sci, 2020, 529: 147131 doi: 10.1016/j.apsusc.2020.147131
|
[16] |
Chen S Q, Li M, Ma X Y, et al. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere, 2021, 264: 128392 doi: 10.1016/j.chemosphere.2020.128392
|
[17] |
Rajan S T, Anusha T V V, Terada-Nakaishi M, et al. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Biomed Mater, 2020, 15(6): 065019 doi: 10.1088/1748-605X/aba23a
|
[18] |
Li R F, Qiu Y, Zhu Y Y. Friction wear property of laser surface processed Ni-based amorphous alloy coatings. Int J Mod Phys B, 2019, 33: 1940014 doi: 10.1142/S0217979219400149
|
[19] |
Wang H Z, Cheng Y H, Yang J Y, et al. Microstructure and properties of laser clad Fe-based amorphous alloy coatings containing Nb powder. J Non-Crystalline Solids, 2020, 550: 120351 doi: 10.1016/j.jnoncrysol.2020.120351
|
[20] |
Su Y P, Yue T M. Microstructures of the bonding area in laser cladded Zr-based amorphous alloy coating on magnesium. Mater Today Commun, 2020, 25: 101715 doi: 10.1016/j.mtcomm.2020.101715
|
[21] |
Yoon J S, Doerr H J, Deshpandey C V, et al. Amorphous nickel phosphide alloy coatings obtained by magnetron sputtering methods for magnetic recording disk. J Electrochem Soc, 2019, 136(11): 3513
|
[22] |
Chu J P, Lai B Z, Yiu P, et al. Metallic glass coating for improving diamond dicing performance. Sci Rep, 2020, 10(1): 12432 doi: 10.1038/s41598-020-69399-9
|
[23] |
He R R, Li M F, Malomo B, et al. Enhancing corrosion and mechanical properties of 304 stainless steel by depositing and annealing Zr75Cu25 thin-film metallic glass. Surf Coat Technol, 2020, 400: 126221 doi: 10.1016/j.surfcoat.2020.126221
|
[24] |
Li C J. Applications, research progresses and future challenges of thermal spray technology. Therm Spray Technol, 2018, 10(4): 1 doi: 10.3969/j.issn.1674-7127.2018.04.001李長久. 熱噴涂技術應用及研究進展與挑戰. 熱噴涂技術, 2018, 10(4):1 doi: 10.3969/j.issn.1674-7127.2018.04.001
|
[25] |
Miura H, Isa S, Omuro K. Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates. Trans Jpn Inst Met, 1984, 25(4): 284 doi: 10.2320/matertrans1960.25.284
|
[26] |
Miracle D B. A structural model for metallic glasses. Nat Mater, 2004, 3(10): 697 doi: 10.1038/nmat1219
|
[27] |
Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition. Nature, 2001, 410(6825): 259 doi: 10.1038/35065704
|
[28] |
Guan P F, Wang B, Wu Y C, et al. Heterogeneity: the soul of metallic glasses. Acta Phys Sin, 2017, 66(17): 154管鵬飛, 王兵, 吳義成, 等. 不均勻性: 非晶合金的靈魂. 物理學報, 2017, 66(17):154
|
[29] |
Guo H, Zhang S D, Sun W H, et al. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings. J Mater Sci Technol, 2019, 35(5): 865 doi: 10.1016/j.jmst.2018.11.006
|
[30] |
Nayak S K, Kumar A, Pathak A, et al. Multi-scale mechanical properties of Fe-based amorphous/nanocrystalline composite coating synthesized by HVOF spraying. J Alloys Compd, 2020, 825: 154120 doi: 10.1016/j.jallcom.2020.154120
|
[31] |
Cheng J B, Zhang Q, Feng Y, et al. Microstructure and sliding wear behaviors of plasma-sprayed Fe-based amorphous coatings in 3.5 wt. % NaCl solution. J Therm Spray Technol, 2019, 28(5): 1049 doi: 10.1007/s11666-019-00866-0
|
[32] |
Cheng J B, Liang X B, Xu B S. Devitrification of arc-sprayed FeBSiNb amorphous coatings: Effects on wear resistance and mechanical behavior. Surf Coat Technol, 2013, 235: 720 doi: 10.1016/j.surfcoat.2013.08.054
|
[33] |
Liang D D, Ma J, Cai Y F, et al. Characterization and elevated-temperature tribological performance of AC–HVAF-sprayed Fe-based amorphous coating. Surf Coat Technol, 2020, 387: 125535 doi: 10.1016/j.surfcoat.2020.125535
|
[34] |
Li X Q, Zhai H M, Li W S, et al. Dry sliding wear behaviors of Fe-based amorphous metallic coating synthesized by d-gun spray. J Non-Crystalline Solids, 2020, 537: 120018 doi: 10.1016/j.jnoncrysol.2020.120018
|
[35] |
Huang F, Kang J J, Yue W, et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying. J Therm Spray Technol, 2019, 28(4): 842 doi: 10.1007/s11666-019-00843-7
|
[36] |
Wang G, Huang Z J, Xiao P, et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF. J Manuf Processes, 2016, 22: 34 doi: 10.1016/j.jmapro.2016.01.009
|
[37] |
Kumar A, Nayak S K, Bijalwan P, et al. Mechanical and corrosion properties of plasma-sprayed Fe-based amorphous/nanocrystalline composite coating. Adv Mater Process Technol, 2019, 5(2): 371
|
[38] |
Kumar A, Nayak S K, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surf Coat Technol, 2019, 370: 255 doi: 10.1016/j.surfcoat.2019.05.010
|
[39] |
Liu S L, Zhu Y S, Lai X Y, et al. Influence of different heat treatment temperatures on the microstructure, corrosion, and mechanical properties behavior of Fe-based amorphous/nanocrystalline coatings. Coatings, 2019, 9(12): 858 doi: 10.3390/coatings9120858
|
[40] |
Zhang Z B, Liang X B, Xu B S. Preparation of Al-based amorphous/nanocrystalline composite coating on Mg-based alloys precipitated by arc spraying process. Rare Met Mater Eng, 2012, 41(Suppl 1): 439
|
[41] |
Guo S F, Pan F S, Zhang H J, et al. Fe-based amorphous coating for corrosion protection of magnesium alloy. Mater Des, 2016, 108: 624 doi: 10.1016/j.matdes.2016.07.031
|
[42] |
Qiu S, Zhang L M, Hu H X, et al. Preparation of HVAF prepared Al-based amorphous coating and its corrosion behavior characterization. Chin J Ship Res, 2020, 15(4): 89邱實, 張連民, 胡紅祥, 等. HVAF制備鋁基非晶合金涂層及其腐蝕行為研究. 中國艦船研究, 2020, 15(4):89
|
[43] |
Kim K W, Ham G S, Cho G S, et al. Microstructures and corrosion properties of novel Fe46.8–Mo30.6–Cr16.6–C4.3–B1.7 metallic glass coatings manufactured by vacuum plasma spray process. Intermetallics, 2021, 130: 107061 doi: 10.1016/j.intermet.2020.107061
|
[44] |
Ham G S, Kim K W, Cho G S, et al. Fabrication, microstructure and wear properties of novel Fe–Mo–Cr–C–B metallic glass coating layers manufactured by various thermal spray processes. Mater Des, 2020, 195: 109043 doi: 10.1016/j.matdes.2020.109043
|
[45] |
Su J, Kang J J, Yue W, et al. Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying. J Non-Crystalline Solids, 2019, 522: 119582 doi: 10.1016/j.jnoncrysol.2019.119582
|
[46] |
Cao Q, Huang G S, Ma L, et al. Comparison of a cold‐sprayed and plasma-sprayed Fe25Cr20Mo1Si amorphous alloy coatings on 40Cr substrates. Mater Corros, 2020, 71(11): 1872 doi: 10.1002/maco.202011558
|
[47] |
Vignesh S, Shanmugam K, Balasubramanian V, et al. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings. Defence Technol, 2017, 13(2): 101 doi: 10.1016/j.dt.2017.03.001
|
[48] |
Wasekar N P, Hebalkar N, Jyothirmayi A, et al. Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corros Sci, 2020, 165: 108409 doi: 10.1016/j.corsci.2019.108409
|
[49] |
Huang F, Kang J J, Yue W, et al. Effect of heat treatment on erosion-corrosion of Fe-based amorphous alloy coating under slurry impingement. J Alloys Compd, 2020, 820: 153132 doi: 10.1016/j.jallcom.2019.153132
|
[50] |
Liu M M. The Effect of Sealing Treatment on the Corrosion and Erosion-Corrosion of High-Velocity Oxy-Fuel Fe-Based Amorphous Coating [Dissertation]. Hefei: University of Science and Technology of China, 2019劉明明. 封孔處理對HVOF鐵基非晶涂層的腐蝕和沖蝕行為的影響研究[學位論文]. 合肥: 中國科學技術大學, 2019
|
[51] |
Liu L, Wu L, Chen X B, et al. Enhanced protective coatings on Ti–10V–2Fe–3Al alloy through anodizing and post-sealing with layered double hydroxides. J Mater Sci Technol, 2020, 37: 104 doi: 10.1016/j.jmst.2019.07.032
|