<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

熱噴涂制備非晶合金涂層性能的研究進展

辛蔚 王玉江 魏世丞 王博 梁義 袁悅 徐濱士

辛蔚, 王玉江, 魏世丞, 王博, 梁義, 袁悅, 徐濱士. 熱噴涂制備非晶合金涂層性能的研究進展[J]. 工程科學學報, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001
引用本文: 辛蔚, 王玉江, 魏世丞, 王博, 梁義, 袁悅, 徐濱士. 熱噴涂制備非晶合金涂層性能的研究進展[J]. 工程科學學報, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001
XIN Wei, WANG Yu-jiang, WEI Shi-cheng, WANG Bo, LIANG Yi, YUAN Yue, XU Bin-shi. Research progress on the properties of amorphous alloy coatings prepared by thermal spraying[J]. Chinese Journal of Engineering, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001
Citation: XIN Wei, WANG Yu-jiang, WEI Shi-cheng, WANG Bo, LIANG Yi, YUAN Yue, XU Bin-shi. Research progress on the properties of amorphous alloy coatings prepared by thermal spraying[J]. Chinese Journal of Engineering, 2021, 43(3): 311-320. doi: 10.13374/j.issn2095-9389.2020.11.20.001

熱噴涂制備非晶合金涂層性能的研究進展

doi: 10.13374/j.issn2095-9389.2020.11.20.001
基金項目: 國家重點研發計劃資助項目(2019YFC1908100)
詳細信息
    通訊作者:

    E-mail:yjwang201617@163.com

  • 中圖分類號: TG131;TG174.442

Research progress on the properties of amorphous alloy coatings prepared by thermal spraying

More Information
  • 摘要: 首先介紹了非晶合金的理論基礎,然后從耐磨性和耐蝕性兩個方面入手,詳細地闡述了國內外對于熱噴涂非晶合金涂層性能研究進展情況,并系統地總結了非金合金涂層在耐磨性和耐蝕性上的本質聯系和根本矛盾,最后指出熱噴涂非晶合金涂層性能研究上的局限性,提出三點問題:對于非晶合金基礎理論的研究還處在起步階段、熱噴涂制備非晶合金涂層的合金體系種類少、制備非晶合金涂層的熱噴涂技術有待開發,并針對以上三點問題提出熱噴涂制備非晶合金涂層性能研究的未來發展方向。

     

  • 圖  1  非晶和晶體的形成過程[27]

    Figure  1.  Diagram of the formation of amorphous and crystal materials[27]

    圖  2  不同載荷下摩擦系數隨滑動時間的變化[29]。(a)非晶合金涂層(ASC);(b)不銹鋼涂層(SSC)

    Figure  2.  Variation of COFs with sliding time[29]: (a) amorphous steel coating; (b) stainless steel coating

    圖  3  不同送粉率下涂層的X射線衍射圖譜[30]

    Figure  3.  XRD patterns of the various high-velocity oxygen-fuel sprayed coatings prepared with different powder feed rates[30]

    圖  4  不同條件下實驗樣品的磨損率和摩擦系數[31]

    Figure  4.  Wear rates and friction coefficients of the tested samples[31]

    圖  5  不同熱處理溫度下涂層磨損量與H/Er的關系[32]

    Figure  5.  Relationship between the wear loss and the H/Er ratio for the coating[32]

    圖  6  不同摩擦學條件下鐵基非晶合金涂層和基體的磨損率[33]

    Figure  6.  Wear rates of Fe-based amorphous coatings and the reference 316L crystalline steels under various sliding conditions[33]

    圖  7  鐵基非晶合金涂層在不同條件下的高溫摩擦學模擬圖[33]。(a)真空;(b)大氣

    Figure  7.  Modeling illustrations of the elevated-temperature tribology process for the Fe-based ACs[33]: (a) vacuum; (b) air

    圖  8  鐵基非晶合金涂層磨損機理圖[34]

    Figure  8.  Schematic diagram showing the wear mechanisms in the Fe-based amorphous coating[34]

    圖  9  涂層、316L鋼和1045鋼在質量分數3.5% NaCl溶液中的動電位極化曲線[35]

    Figure  9.  Potentiodynamic polarization curves of the high-velocity air-fuel coating, 316L steel, and 1045 steel in mass fraction of 3.5% NaCl solution[35]

    圖  10  電化學試驗后的表面形貌圖[36]. 2 mol·L?1 NaOH溶液中的涂層(a)和不銹鋼(b);3.5% NaCl溶液中的涂層(c)和不銹鋼(d)

    Figure  10.  SEM images of surfaces after the electrochemical test[36]: coating (a) and stainless steel (b) in 2 mol·L?1 NaOH solution; coating (c) and stainless steel (d) in 3.5% NaCl solution

    圖  11  不同噴涂功率下的非晶合金涂層、基體和鍍鋅鋼的動電位極化曲線[37]

    Figure  11.  Potentiodynamic polarization curves of the Fe-based composite coatings, deposited with various plasma powers, in comparison with galvanized steel and mild steel substrate[37]

    圖  12  腐蝕條件下退火溫度對質量損失的影響[39]

    Figure  12.  Effect of annealing temperature on the mass loss[39]

    圖  13  涂層性能表征。(a)質量隨浸泡時間的變化;(b)涂層的差示掃描量熱分析曲線[41]

    Figure  13.  Performance characterization of coating: (a) mass as a function of immersion time; (b) DSC curve of the outer Fe-based amorphous coating[41]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy. Adv Sci, 2020, 7(19): 2001480 doi: 10.1002/advs.202001480
    [2] Li S, Huang P, Wang F. Achieving pronounced β-relaxations and improved plasticity in CuZr metallic glass. J Alloys Compd, 2021, 850: 156774 doi: 10.1016/j.jallcom.2020.156774
    [3] Li Q, Shang Z X, Sun X, et al. High-strength and tunable plasticity in sputtered Al–Cr alloys with multistage phase transformations. Int J Plast, 2021, 137: 102915 doi: 10.1016/j.ijplas.2020.102915
    [4] Gao M H, Zhang S D, Yang B J, et al. Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy. Appl Surf Sci, 2020, 530: 147211 doi: 10.1016/j.apsusc.2020.147211
    [5] Gu J L, Lu S Y, Shao Y, et al. Segregating the homogeneous passive film and understanding the passivation mechanism of Ti-based metallic glasses. Corros Sci, 2021, 178: 109078 doi: 10.1016/j.corsci.2020.109078
    [6] Sohrabi N, Panikar R S, Jhabvala J, et al. Laser coating of a Zr-based metallic glass on an aluminum substrate. Surf Coat Technol, 2020, 400: 126223 doi: 10.1016/j.surfcoat.2020.126223
    [7] Tian L, Yang Y Q, Meyer T, et al. Environmental transmission electron microscopy study of hydrogen charging effect on a Cu–Zr metallic glass. Mater Res Lett, 2020, 8(12): 439 doi: 10.1080/21663831.2020.1791273
    [8] Sarac B, Zadorozhnyy V, Ivanov Y P, et al. Surface-governed electrochemical hydrogenation in FeNi-based metallic glass. J Power Sources, 2020, 475: 228700 doi: 10.1016/j.jpowsour.2020.228700
    [9] Huang H, Zhang Y. High-entropy alloy and metallic glass flexible materials. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.08.31.003

    黃浩, 張勇. 高熵合金與非晶合金柔性材料. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.08.31.003
    [10] Hou L, Li M R, Jiang C, et al. Thermal and magnetic properties of Fe(Co)BCCu amorphous alloys with high saturation magnetization of 1.77 T. J Alloys Compd, 2021, 853: 157071 doi: 10.1016/j.jallcom.2020.157071
    [11] Li F M, Feng J Q, Yi J, et al. Magnetocaloric properties of LaFe11.4Si1.6 based amorphous alloys. J Alloys Compd, 2020, 845: 156191 doi: 10.1016/j.jallcom.2020.156191
    [12] Nosenko A V, Kyrylchuk V V, Semen’Ko M P, et al. Soft magnetic cobalt based amorphous alloys with low saturation induction. J Magn Magn Mater, 2020, 515: 167328 doi: 10.1016/j.jmmm.2020.167328
    [13] Cheng J Y, Li T, Ullah S, et al. Giant magnetocaloric effect in nanostructured Fe–Co–P amorphous alloys enabled through pulse electrodeposition. Nanotechnology, 2020, 31(38): 385704 doi: 10.1088/1361-6528/ab9971
    [14] Jia Z, Jiang J L, Sun L G, et al. Role of boron in enhancing electron delocalization to improve catalytic activity of Fe-based metallic glasses for persulfate-based advanced oxidation. ACS Appl Mater Interfaces, 2020, 12(40): 44789 doi: 10.1021/acsami.0c13324
    [15] Kassa S T, Hu C C, Keshebo D L, et al. Surface modification of high-rejection ultrafiltration membrane with antifouling capability using activated oxygen treatment and metallic glass deposition. Appl Surf Sci, 2020, 529: 147131 doi: 10.1016/j.apsusc.2020.147131
    [16] Chen S Q, Li M, Ma X Y, et al. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere, 2021, 264: 128392 doi: 10.1016/j.chemosphere.2020.128392
    [17] Rajan S T, Anusha T V V, Terada-Nakaishi M, et al. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Biomed Mater, 2020, 15(6): 065019 doi: 10.1088/1748-605X/aba23a
    [18] Li R F, Qiu Y, Zhu Y Y. Friction wear property of laser surface processed Ni-based amorphous alloy coatings. Int J Mod Phys B, 2019, 33: 1940014 doi: 10.1142/S0217979219400149
    [19] Wang H Z, Cheng Y H, Yang J Y, et al. Microstructure and properties of laser clad Fe-based amorphous alloy coatings containing Nb powder. J Non-Crystalline Solids, 2020, 550: 120351 doi: 10.1016/j.jnoncrysol.2020.120351
    [20] Su Y P, Yue T M. Microstructures of the bonding area in laser cladded Zr-based amorphous alloy coating on magnesium. Mater Today Commun, 2020, 25: 101715 doi: 10.1016/j.mtcomm.2020.101715
    [21] Yoon J S, Doerr H J, Deshpandey C V, et al. Amorphous nickel phosphide alloy coatings obtained by magnetron sputtering methods for magnetic recording disk. J Electrochem Soc, 2019, 136(11): 3513
    [22] Chu J P, Lai B Z, Yiu P, et al. Metallic glass coating for improving diamond dicing performance. Sci Rep, 2020, 10(1): 12432 doi: 10.1038/s41598-020-69399-9
    [23] He R R, Li M F, Malomo B, et al. Enhancing corrosion and mechanical properties of 304 stainless steel by depositing and annealing Zr75Cu25 thin-film metallic glass. Surf Coat Technol, 2020, 400: 126221 doi: 10.1016/j.surfcoat.2020.126221
    [24] Li C J. Applications, research progresses and future challenges of thermal spray technology. Therm Spray Technol, 2018, 10(4): 1 doi: 10.3969/j.issn.1674-7127.2018.04.001

    李長久. 熱噴涂技術應用及研究進展與挑戰. 熱噴涂技術, 2018, 10(4):1 doi: 10.3969/j.issn.1674-7127.2018.04.001
    [25] Miura H, Isa S, Omuro K. Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates. Trans Jpn Inst Met, 1984, 25(4): 284 doi: 10.2320/matertrans1960.25.284
    [26] Miracle D B. A structural model for metallic glasses. Nat Mater, 2004, 3(10): 697 doi: 10.1038/nmat1219
    [27] Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition. Nature, 2001, 410(6825): 259 doi: 10.1038/35065704
    [28] Guan P F, Wang B, Wu Y C, et al. Heterogeneity: the soul of metallic glasses. Acta Phys Sin, 2017, 66(17): 154

    管鵬飛, 王兵, 吳義成, 等. 不均勻性: 非晶合金的靈魂. 物理學報, 2017, 66(17):154
    [29] Guo H, Zhang S D, Sun W H, et al. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings. J Mater Sci Technol, 2019, 35(5): 865 doi: 10.1016/j.jmst.2018.11.006
    [30] Nayak S K, Kumar A, Pathak A, et al. Multi-scale mechanical properties of Fe-based amorphous/nanocrystalline composite coating synthesized by HVOF spraying. J Alloys Compd, 2020, 825: 154120 doi: 10.1016/j.jallcom.2020.154120
    [31] Cheng J B, Zhang Q, Feng Y, et al. Microstructure and sliding wear behaviors of plasma-sprayed Fe-based amorphous coatings in 3.5 wt. % NaCl solution. J Therm Spray Technol, 2019, 28(5): 1049 doi: 10.1007/s11666-019-00866-0
    [32] Cheng J B, Liang X B, Xu B S. Devitrification of arc-sprayed FeBSiNb amorphous coatings: Effects on wear resistance and mechanical behavior. Surf Coat Technol, 2013, 235: 720 doi: 10.1016/j.surfcoat.2013.08.054
    [33] Liang D D, Ma J, Cai Y F, et al. Characterization and elevated-temperature tribological performance of AC–HVAF-sprayed Fe-based amorphous coating. Surf Coat Technol, 2020, 387: 125535 doi: 10.1016/j.surfcoat.2020.125535
    [34] Li X Q, Zhai H M, Li W S, et al. Dry sliding wear behaviors of Fe-based amorphous metallic coating synthesized by d-gun spray. J Non-Crystalline Solids, 2020, 537: 120018 doi: 10.1016/j.jnoncrysol.2020.120018
    [35] Huang F, Kang J J, Yue W, et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying. J Therm Spray Technol, 2019, 28(4): 842 doi: 10.1007/s11666-019-00843-7
    [36] Wang G, Huang Z J, Xiao P, et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF. J Manuf Processes, 2016, 22: 34 doi: 10.1016/j.jmapro.2016.01.009
    [37] Kumar A, Nayak S K, Bijalwan P, et al. Mechanical and corrosion properties of plasma-sprayed Fe-based amorphous/nanocrystalline composite coating. Adv Mater Process Technol, 2019, 5(2): 371
    [38] Kumar A, Nayak S K, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating. Surf Coat Technol, 2019, 370: 255 doi: 10.1016/j.surfcoat.2019.05.010
    [39] Liu S L, Zhu Y S, Lai X Y, et al. Influence of different heat treatment temperatures on the microstructure, corrosion, and mechanical properties behavior of Fe-based amorphous/nanocrystalline coatings. Coatings, 2019, 9(12): 858 doi: 10.3390/coatings9120858
    [40] Zhang Z B, Liang X B, Xu B S. Preparation of Al-based amorphous/nanocrystalline composite coating on Mg-based alloys precipitated by arc spraying process. Rare Met Mater Eng, 2012, 41(Suppl 1): 439
    [41] Guo S F, Pan F S, Zhang H J, et al. Fe-based amorphous coating for corrosion protection of magnesium alloy. Mater Des, 2016, 108: 624 doi: 10.1016/j.matdes.2016.07.031
    [42] Qiu S, Zhang L M, Hu H X, et al. Preparation of HVAF prepared Al-based amorphous coating and its corrosion behavior characterization. Chin J Ship Res, 2020, 15(4): 89

    邱實, 張連民, 胡紅祥, 等. HVAF制備鋁基非晶合金涂層及其腐蝕行為研究. 中國艦船研究, 2020, 15(4):89
    [43] Kim K W, Ham G S, Cho G S, et al. Microstructures and corrosion properties of novel Fe46.8–Mo30.6–Cr16.6–C4.3–B1.7 metallic glass coatings manufactured by vacuum plasma spray process. Intermetallics, 2021, 130: 107061 doi: 10.1016/j.intermet.2020.107061
    [44] Ham G S, Kim K W, Cho G S, et al. Fabrication, microstructure and wear properties of novel Fe–Mo–Cr–C–B metallic glass coating layers manufactured by various thermal spray processes. Mater Des, 2020, 195: 109043 doi: 10.1016/j.matdes.2020.109043
    [45] Su J, Kang J J, Yue W, et al. Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying. J Non-Crystalline Solids, 2019, 522: 119582 doi: 10.1016/j.jnoncrysol.2019.119582
    [46] Cao Q, Huang G S, Ma L, et al. Comparison of a cold‐sprayed and plasma-sprayed Fe25Cr20Mo1Si amorphous alloy coatings on 40Cr substrates. Mater Corros, 2020, 71(11): 1872 doi: 10.1002/maco.202011558
    [47] Vignesh S, Shanmugam K, Balasubramanian V, et al. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings. Defence Technol, 2017, 13(2): 101 doi: 10.1016/j.dt.2017.03.001
    [48] Wasekar N P, Hebalkar N, Jyothirmayi A, et al. Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corros Sci, 2020, 165: 108409 doi: 10.1016/j.corsci.2019.108409
    [49] Huang F, Kang J J, Yue W, et al. Effect of heat treatment on erosion-corrosion of Fe-based amorphous alloy coating under slurry impingement. J Alloys Compd, 2020, 820: 153132 doi: 10.1016/j.jallcom.2019.153132
    [50] Liu M M. The Effect of Sealing Treatment on the Corrosion and Erosion-Corrosion of High-Velocity Oxy-Fuel Fe-Based Amorphous Coating [Dissertation]. Hefei: University of Science and Technology of China, 2019

    劉明明. 封孔處理對HVOF鐵基非晶涂層的腐蝕和沖蝕行為的影響研究[學位論文]. 合肥: 中國科學技術大學, 2019
    [51] Liu L, Wu L, Chen X B, et al. Enhanced protective coatings on Ti–10V–2Fe–3Al alloy through anodizing and post-sealing with layered double hydroxides. J Mater Sci Technol, 2020, 37: 104 doi: 10.1016/j.jmst.2019.07.032
  • 加載中
圖(13)
計量
  • 文章訪問數:  1348
  • HTML全文瀏覽量:  860
  • PDF下載量:  75
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-20
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回