-
摘要: 中國的頁巖氣田屬于非常規氣藏,采用體積壓裂工程技術才可以實現有效開采。不過,頁巖儲層與一般儲層的性質不同,納米級孔隙大量分布,其孔隙和滲透率十分微小,同時還分布有微裂縫,氣體在其中的流動具有解吸、擴散、滑脫和滲流等多種微觀機理,并且呈現出基質?微裂縫?人工裂縫的跨尺度多流態流動。常規的油氣開發理論與技術并不適用于頁巖氣藏,因此需要有針對性的研究,并建立頁巖氣開發的理論與技術,才能實現我國頁巖氣藏的高效地開發。從頁巖氣流動的基本規律出發,總結了頁巖氣流動的多流態?多尺度?多場耦合輸運機理和滲流規律,歸納了考慮解吸?擴散?滑移?滲流的多尺度非線性滲流統一方程,給出了多尺度全流態圖版。通過頁巖氣多級壓裂水平井多區耦合非線性滲流理論、多場耦合非線性滲流理論,形成頁巖氣藏流場區域儲量動用與開發動態變化規律,針對我國頁巖氣特點構建了頁巖氣產量遞減模型。基于上述理論提出了開發設計方法,提出了我國儲層分級評價及優選目標評價方法,并且建立了適合我國儲層的分級評價及優選目標方法與指標,對中國頁巖氣壓裂開發工藝適應性技術進展進行了歸納總結。在此基礎上,對未來頁巖氣高效開發理論的發展方向進行了展望,以期對我國頁巖氣理論和技術研究提供指導。Abstract: The shale gas reservoirs in China are unconventional gas reservoirs that have been developed with volumetric fracturing engineering technologies to achieve effective production. However, shale reservoirs differ from conventional reservoirs in that they have widely distributed nanoscale pores, low porosity and permeability, and widely distributed microfractures. Shale reservoirs have various gas flow mechanisms, including desorption, diffusion, slippage, and seepage, which result in a cross-scale and multifluid coexistence flow through matrix microfractures and artificial fractures. Conventional oil and gas development theories and technologies are not directly applicable to shale gas reservoirs. Therefore, to establish shale development theories and technologies and realize the efficient development of shale gas reservoirs in China, targeted research is required. This article summarized the basic laws of shale gas flow, the multifluid, multiscale, and multifield coupled transport mechanism and porous flow laws of shale gas flow, and the multiscale and nonlinear unified flow equation based on desorption, diffusion, slippage, and porous flow. The full multiscale flow pattern was also provided. The multizone and multifield coupling nonlinear porous flow theories for multistage fractured horizontal shale gas wells were established to detect the production range and development dynamics of flow field zone reserves in shale gas reservoirs. A production decline model for shale gas production was developed based on the characteristics of China's shale gas reservoirs. Based on the abovementioned theory, development design methods and classification and optimization target evaluation methods that are suitable for China's shale gas reservoirs have been proposed. The progress of the adaptability technology for China's shale gas fracturing development process was summarized. The future developmental direction of efficient shale gas development theory was forecasted on this basis to provide guidance for shale gas theory and technology research in China.
-
Key words:
- shale gas /
- nonlinear porous flow /
- nano-micron flow /
- multi-sector coupling /
- porous flow theory
-
Shale reservoir classification TOC/
%Effective porosity/% Brittleness index Total gas content / (m3·t?1) Class Ⅰ ≥3 ≥5 ≥55 ≥3 Class Ⅱ 2?3 3?5 45?55 2?3 Class Ⅲ 1?2 2?3 30?45 1?2 表 2 頁巖氣開發有利目標優選指標與標準[65]
Table 2. Preferred indicators and standards for favorable targets for shale gas development[65]
Reservoir depth /m Reservoir thickness of Class I+II/m Pressure coefficient Distance to erosion line /km Distance to fault /m Ground conditions <3500 >20 >1.2(gas content >3 m3·t?1, vertical well test production >10000 m3·d?1) >7–8 >700 Fulfill the requirement of wells deployment 259luxu-164 -
參考文獻
[1] Tian G. China's shale gas reserves exceeded 1 trillion cubic meters. Nat Gas Ind, 2018, 38(7): 119天工. 我國頁巖氣儲量突破1萬億立方米. 天然氣工業, 2018, 38(7):119 [2] Zou C N, Dong D Z, Wang S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Explor Dev, 2010, 37(6): 641 doi: 10.1016/S1876-3804(11)60001-3鄒才能, 董大忠, 王社教, 等. 中國頁巖氣形成機理、地質特征及資源潛力. 石油勘探與開發, 2010, 37(6):641 doi: 10.1016/S1876-3804(11)60001-3 [3] Yao J, Sun H, Huang Z Q, et al. Key mechanical problems in the developmentof shale gas reservoirs. Sci Sinica Phys Mech Astron, 2013, 43(12): 1527 doi: 10.1360/132013-97姚軍, 孫海, 黃朝琴, 等. 頁巖氣藏開發中的關鍵力學問題. 中國科學:物理學 力學 天文學, 2013, 43(12):1527 doi: 10.1360/132013-97 [4] Yu R Z, Zhang X W, Bian Y N, et al. Flow mechanism of shale gas reservoirs and influential factors of their productivity. Nat Gas Ind, 2012, 32(9): 10 doi: 10.3787/j.issn.1000-0976.2012.09.003于榮澤, 張曉偉, 卞亞南, 等. 頁巖氣藏流動機理與產能影響因素分析. 天然氣工業, 2012, 32(9):10 doi: 10.3787/j.issn.1000-0976.2012.09.003 [5] Wei M Q, Duan Y G, Fang Q T, et al. Current research situation of porosity & permeability characteristics and seepage mechanism of shale gas reservoir. Reserv Eval Dev, 2011, 1(4): 73 doi: 10.3969/j.issn.2095-1426.2011.04.015魏明強, 段永剛, 方全堂, 等. 頁巖氣藏孔滲結構特征和滲流機理研究現狀. 油氣藏評價與開發, 2011, 1(4):73 doi: 10.3969/j.issn.2095-1426.2011.04.015 [6] Nie H K, Zhang J C. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin. Petroleum Geol Exp, 2011, 33(3): 219 doi: 10.3969/j.issn.1001-6112.2011.03.001聶海寬, 張金川. 頁巖氣儲層類型和特征研究——以四川盆地及其周緣下古生界為例. 石油實驗地質, 2011, 33(3):219 doi: 10.3969/j.issn.1001-6112.2011.03.001 [7] Wang X, Liu Y H, Zhang M, et al. Conditions of formation and accumulation for shale gas. Nat Gas Geosci, 2010, 21(2): 350王祥, 劉玉華, 張敏, 等. 頁巖氣形成條件及成藏影響因素研究. 天然氣地球科學, 2010, 21(2):350 [8] Zhang X F, Lu X C, Zhang L Y, et al. Occurrences of shale gas and their petroleum geological significance. Adv Earth Sci, 2010, 25(6): 597張雪芬, 陸現彩, 張林曄, 等. 頁巖氣的賦存形式研究及其石油地質意義. 地球科學進展, 2010, 25(6):597 [9] Zhang T W, Ellis G S, Ruppel S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem, 2012, 47: 120 doi: 10.1016/j.orggeochem.2012.03.012 [10] Zhu W Y, Song F Q, Shang X C, et al. Nonlinear Porous Flow Theory and Method of Shale Gas Reservoirs Efficiently Development. Beijing: Science Press, 2018朱維耀, 宋付權, 尚新春, 等. 頁巖氣藏有效開發非線性滲流理論及方法. 北京: 科學出版社, 2018 [11] Guo W, Xiong W, Gao S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Explor Dev, 2013, 40(4): 481 doi: 10.11698/PED.2013.04.14郭為, 熊偉, 高樹生, 等. 溫度對頁巖等溫吸附/解吸特征影響. 石油勘探與開發, 2013, 40(4):481 doi: 10.11698/PED.2013.04.14 [12] Zhang Z Y, Yang S B. On the adsorption and desorption trend of shale gas. J Exp Mech, 2012, 27(4): 492張志英, 楊盛波. 頁巖氣吸附解吸規律研究. 實驗力學, 2012, 27(4):492 [13] Yu W, Sepehrnoori K, Patzek T W. Evaluation of gas adsorption in Marcellus shaleAll Days // SPE Annual Technical Conference and Exhibition. Amsterdam, 2014: 27 [14] Merkel A, Fink R, Littke R. High pressure methane sorption characteristics of lacustrine shales from the Midland Valley Basin, Scotland. Fuel, 2016, 182: 361 doi: 10.1016/j.fuel.2016.05.118 [15] Rexer T F T, Benham M J, Aplin A C, et al. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels, 2013, 27(6): 3099 doi: 10.1021/ef400381v [16] Guan F J, Zhang J, Wang H T, et al. Experimental study on desorption hysteresis of longmaxi formation shale in eastern Sichuan. J Xi’an Shiyou Univ Nat Sci, 2017, 32(1): 71關富佳, 張杰, 王海濤, 等. 川東龍馬溪組頁巖解吸滯后現象實驗研究. 西安石油大學學報(自然科學版), 2017, 32(1):71 [17] Duan X G, Hu Z M, Gao S S, et al. Shale high pressure isothermal adsorption curve and the production dynamic experiments of gas well. Petroleum Explor Dev, 2018, 45(1): 119端祥剛, 胡志明, 高樹生, 等. 頁巖高壓等溫吸附曲線及氣井生產動態特征實驗. 石油勘探與開發, 2018, 45(1):119 [18] Zhou S W, Wang H Y, Xue H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method. Nat Gas Ind, 2016, 36(11): 12 doi: 10.3787/j.issn.1000-0976.2016.11.002周尚文, 王紅巖, 薛華慶, 等. 頁巖過剩吸附量與絕對吸附量的差異及頁巖氣儲量計算新方法. 天然氣工業, 2016, 36(11):12 doi: 10.3787/j.issn.1000-0976.2016.11.002 [19] Chen H, Guan F J, Zhang J, et al. New method for calculating shale gas adsorption amount at high pressure. Petroleum Geol Recovery Effic, 2019, 26(2): 87陳花, 關富佳, 張杰, 等. 高壓下頁巖氣吸附量計算新方法. 油氣地質與采收率, 2019, 26(2):87 [20] Gao S S, Yu X H, Liu H X. Impact of slippage effect on shale gas well productivity. Nat Gas Ind, 2011, 31(4): 55 doi: 10.3787/j.issn.1000-0976.2011.04.013高樹生, 于興河, 劉華勛. 滑脫效應對頁巖氣井產能影響的分析. 天然氣工業, 2011, 31(4):55 doi: 10.3787/j.issn.1000-0976.2011.04.013 [21] Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments. J Can Petroleum Technol, 2007, 46(10): 55 [22] Zhu W Y, Tian W, Gao Y, et al. Study on experiment conditions of seepage law of marine shale gas. Nat Gas Geosci, 2015, 26(6): 1106朱維耀, 田巍, 高英, 等. 頁巖氣滲流規律測試條件研究. 天然氣地球科學, 2015, 26(6):1106 [23] Yao J, Sun H, Fan D Y, et al. Transport mechanisms and numerical simulation of shale gas reservoirs. J China Univ Petroleum Ed Nat Sci, 2013, 37(1): 91姚軍, 孫海, 樊冬艷, 等. 頁巖氣藏運移機制及數值模擬. 中國石油大學學報(自然科學版), 2013, 37(1):91 [24] Guo X, Zhu Z, Gu S M, et al. Research on sensitivity of temperature and effective stress on shale diffusion. Special Oil &Gas Reservoirs, 2015, 22(2): 74 doi: 10.3969/j.issn.1006-6535.2015.02.018郭肖, 朱爭, 辜思曼, 等. 溫度與有效應力對頁巖擴散的敏感性研究. 特種油氣藏, 2015, 22(2):74 doi: 10.3969/j.issn.1006-6535.2015.02.018 [25] Wu K L, Chen Z X. Review of gas transport in nanopores in shale gas reservoirs. Petroleum Sci Bull, 2016, 1(1): 91吳克柳, 陳掌星. 頁巖氣納米孔氣體傳輸綜述. 石油科學通報, 2016, 1(1):91 [26] Curtis J B. Fractured shale-gas systems. Bulletin, 2002, 86(11): 1921 [27] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. Bulletin, 2012, 96(6): 1099 doi: 10.1306/10171111052 [28] Song F Q, Hu X, Zhu G M, et al. The characteristics of water flow displaced by gas in nano arrays. Chin J Theor Appl Mech, 2018, 50(3): 553 doi: 10.6052/0459-1879-17-343宋付權, 胡簫, 朱根民, 等. 納米陣列中氣體驅替液體的流動特征. 力學學報, 2018, 50(3):553 doi: 10.6052/0459-1879-17-343 [29] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. Bulletin, 2011, 95(12): 2017 doi: 10.1306/03301110145 [30] Ding W L, Li C, Li C Y, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation. Earth Sci Front, 2012, 19(2): 212丁文龍, 李超, 李春燕, 等. 頁巖裂縫發育主控因素及其對含氣性的影響. 地學前緣, 2012, 19(2):212 [31] Wang Y M, Dong D Z, Li J Z, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan. Acta Petrolei Sinica, 2012, 33(4): 551 doi: 10.7623/syxb201204003王玉滿, 董大忠, 李建忠, 等. 川南下志留統龍馬溪組頁巖氣儲層特征. 石油學報, 2012, 33(4):551 doi: 10.7623/syxb201204003 [32] Ma D X, Zhu W Y, Zhang L Y. Microstructure and gas porous flow characteristics of shale reservoirs // Proceedings of the 20th Annual Conference of Beijing Mechanics Society. Beijing, 2014: 17馬東旭, 朱維耀, 張燎原. 頁巖儲層微觀結構及氣體滲流特征 // 北京力學會第20屆學術年會論文集. 北京, 2014: 17 [33] Civan F. A review of approaches for describing gas transfer through extremely tight porous media. AIP Conf Proc, 2010, 1254(1): 53 [34] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J Can Petroleum Technol, 2009, 48(8): 16 doi: 10.2118/09-08-16-DA [35] Wu K L, Chen Z X, Li X F. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs. Chem Eng J, 2015, 281: 813 doi: 10.1016/j.cej.2015.07.012 [36] Wu K L, Chen Z X, Li X F, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling. Int J Heat Mass Transf, 2016, 93: 408 doi: 10.1016/j.ijheatmasstransfer.2015.10.003 [37] Ertekin T, King G A, Schwerer F C. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations. SPE Form Eval, 1986, 1(1): 43 doi: 10.2118/12045-PA [38] Ali Beskok G E K. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1): 43 doi: 10.1080/108939599199864 [39] Civan F, Rai C S, Sondergeld C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transp Porous Media, 2011, 86(3): 925 doi: 10.1007/s11242-010-9665-x [40] Civan F, Rai C S S, Sondergeld C H H. Determining shale permeability to gas by simultaneous analysis of various pressure tests. SPE J, 2012, 17(3): 717 doi: 10.2118/144253-PA [41] Civan F, Devegowda D, Sigal R. Critical evaluation and improvement of methods for determination of matrix permeability of shale // SPE Annual Technical Conference and Exhibition. New Orleans, 2013: 166473 [42] Deng J, Zhu W Y, Ma Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel, 2014, 124: 232 doi: 10.1016/j.fuel.2014.02.001 [43] Yao J, Sun H, Fan D Y, et al. Numerical simulation of gas transport mechanisms in tight shale gas reservoirs. Petroleum Sci, 2013, 10(4): 528 doi: 10.1007/s12182-013-0304-3 [44] Wu K L, Li X F, Wang C C, et al. A model for gas transport in microfractures of shale and tight gas reservoirs. Aiche J, 2015, 61(6): 2079 doi: 10.1002/aic.14791 [45] Wu K L, Li X F, Chen Z X. A model for gas transport through nanopores of shale gas reservoirs. Acta Petrolei Sinica, 2015, 36(7): 837 doi: 10.7623/syxb201507008吳克柳, 李相方, 陳掌星. 頁巖氣納米孔氣體傳輸模型. 石油學報, 2015, 36(7):837 doi: 10.7623/syxb201507008 [46] Wu K L, Li X F, Chen Z X. Real gas transport through nanopores of shale gas reservoirs. Sci Sinica Technol, 2016, 46(1): 68 doi: 10.1360/N092015-00076吳克柳, 李相方, CHEN ZhangXin. 頁巖氣納米孔真實氣體傳輸模型. 中國科學:技術科學, 2016, 46(1):68 doi: 10.1360/N092015-00076 [47] Wu K L, Chen Z X, Li X F, et al. Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect. Fuel, 2017, 205: 173 doi: 10.1016/j.fuel.2017.05.055 [48] Song H Q, Yu M X, Zhu W Y, et al. Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media. Int J Heat Mass Transf, 2015, 80: 626 doi: 10.1016/j.ijheatmasstransfer.2014.09.039 [49] Zhu W Y, Deng J, Yang B H, et al. Seepage modelof shale gas reservoir and productivity analysis of fractured vertical wells. Mech Eng, 2014, 36(2): 156 doi: 10.6052/1000-0879-13-357朱維耀, 鄧佳, 楊寶華, 等. 頁巖氣致密儲層滲流模型及壓裂直井產能分析. 力學與實踐, 2014, 36(2):156 doi: 10.6052/1000-0879-13-357 [50] Yang J, Kang Y L, Sang Y, et al. Research on diffusibility of the gas in tight sand gas reservoir. J Southwest Petroleum Univ Sci Technol, 2009, 31(6): 76楊建, 康毅力, 桑宇, 等. 致密砂巖天然氣擴散能力研究. 西南石油大學學報(自然科學版), 2009, 31(6):76 [51] Yu B M. Advances of fractal analysis of transport properties for porous media. Adv Mech, 2003, 33(3): 333 doi: 10.3321/j.issn:1000-0992.2003.03.005郁伯銘. 多孔介質輸運性質的分形分析研究進展. 力學進展, 2003, 33(3):333 doi: 10.3321/j.issn:1000-0992.2003.03.005 [52] Deng J. Nonlinear Seepage Theory of Multistage Fractured Horizontal Wells for Shale Gas Reservoirs [Dissertation]. Beijing: University of Science and Technology Beijing, 2015鄧佳. 頁巖氣儲層多級壓裂水平井非線性滲流理論研究[學位論文]. 北京: 北京科技大學, 2015 [53] Zhu W Y, Zhang Q T, Yue M, et al. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics. Chin J Eng, 2020, 42(10): 1318朱維耀, 張啟濤, 岳明, 等. 裂縫網絡支撐劑非均勻分布對開采動態規律的影響. 工程科學學報, 2020, 42(10):1318 [54] Zhu W Y, Qi Q, Ma Q, et al. Unstable seepage modeling and pressure propagation of shale gas reservoirs. Petroleum Explor Dev, 2016, 43(2): 261 doi: 10.1016/S1876-3804(16)30029-5朱維耀, 亓倩, 馬千, 等. 頁巖氣不穩定滲流壓力傳播規律和數學模型. 石油勘探與開發, 2016, 43(2):261 doi: 10.1016/S1876-3804(16)30029-5 [55] Qi Q, Zhu W Y. Moving boundary analysis of fractured shale gas reservoir. Chin J Eng, 2019, 41(11): 1387亓倩, 朱維耀. 復雜壓裂縫網頁巖氣儲層壓力傳播動邊界研究. 工程科學學報, 2019, 41(11):1387 [56] Li W G, Zhong B, Fan H C, et al. Shale Gas Yield Decline Analysis Method: China Patent, 201410852718.3. 2016-07-27李武廣, 鐘兵, 樊懷才, 等. 一種頁巖氣產量遞減分析方法: 中國專利, 201410852718.3. 2016-07-27 [57] Li X J, Hu S Y, Cheng K M. Suggestions from the development of fractured shale gas in North America. Petroleum Explor Dev, 2007, 34(4): 392 doi: 10.3321/j.issn:1000-0747.2007.04.002李新景, 胡素云, 程克明. 北美裂縫性頁巖氣勘探開發的啟示. 石油勘探與開發, 2007, 34(4):392 doi: 10.3321/j.issn:1000-0747.2007.04.002 [58] Zhang J C, Nie H K, Xu B, et al. Geological condition of shale gas accumulation in Sichuan basin. Nat Gas Ind, 2008, 28(2): 151 doi: 10.3787/j.issn.1000-0976.2008.02.045張金川, 聶海寬, 徐波, 等. 四川盆地頁巖氣成藏地質條件. 天然氣工業, 2008, 28(2):151 doi: 10.3787/j.issn.1000-0976.2008.02.045 [59] Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrol Sinica, 2011, 27(6): 1857鄒才能, 朱如凱, 白斌, 等. 中國油氣儲層中納米孔首次發現及其科學價值. 巖石學報, 2011, 27(6):1857 [60] Zhao S X, Yang Y M, Zhang J, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China. Nat Gas Geosci, 2016, 27(3): 470 doi: 10.11764/j.issn.1672-1926.2016.03.0470趙圣賢, 楊躍明, 張鑒, 等. 四川盆地下志留統龍馬溪組頁巖小層劃分與儲層精細對比. 天然氣地球科學, 2016, 27(3):470 doi: 10.11764/j.issn.1672-1926.2016.03.0470 [61] Li W G, Yang S L, Chen F, et al. The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature. J Mineral Petrol, 2012, 32(2): 115 doi: 10.3969/j.issn.1001-6872.2012.02.015李武廣, 楊勝來, 陳峰, 等. 溫度對頁巖吸附解吸的敏感性研究. 礦物巖石, 2012, 32(2):115 doi: 10.3969/j.issn.1001-6872.2012.02.015 [62] Li W G, Wu J F, Song W H, et al. Study on quantitative evaluation method of shale nanopore classification. Nat Gas Oil, 2017, 35(2): 74 doi: 10.3969/j.issn.1006-5539.2017.02.015李武廣, 吳建發, 宋文豪, 等. 頁巖納米孔隙分級量化評價方法研究. 天然氣與石油, 2017, 35(2):74 doi: 10.3969/j.issn.1006-5539.2017.02.015 [63] Li Y J, Feng Y Y, Liu H, et al. Geological characteristics and resource potential of lacustrine shale gas in the Sichuan Basin, SW China. Petroleum Explor Dev, 2013, 40(4): 423 doi: 10.11698/PED.2013.04.05李延鈞, 馮媛媛, 劉歡, 等. 四川盆地湖相頁巖氣地質特征與資源潛力. 石油勘探與開發, 2013, 40(4):423 doi: 10.11698/PED.2013.04.05 [64] Liu W P, Zhang C L, Gao G D, et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 2017, 38(2): 175 doi: 10.7623/syxb201702005劉文平, 張成林, 高貴冬, 等. 四川盆地龍馬溪組頁巖孔隙度控制因素及演化規律. 石油學報, 2017, 38(2):175 doi: 10.7623/syxb201702005 [65] Xie J, Zhao S X, Shi X W, et al. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin. Nat Gas Ind, 2017, 37(7): 1 doi: 10.3787/j.issn.1000-0976.2017.07.001謝軍, 趙圣賢, 石學文, 等. 四川盆地頁巖氣水平井高產的地質主控因素. 天然氣工業, 2017, 37(7):1 doi: 10.3787/j.issn.1000-0976.2017.07.001 [66] Zou X B. New progress in shale gas drilling technology. Chem Enterp Manag, 2019(19): 84 doi: 10.3969/j.issn.1008-4800.2019.19.059鄒憲斌. 頁巖氣鉆井技術新進展. 化工管理, 2019(19):84 doi: 10.3969/j.issn.1008-4800.2019.19.059 [67] Chen G S, Wu J F, Liu Y, et al. Geology-engineeing integration key technologies for ten billion cubic meters of shale gas productivity construction in the Southern Sichuan Basin. Nat Gas Ind, 2021, 41(1): 72陳更生, 吳建發, 劉勇, 等. 川南地區百億立方米頁巖氣產能建設地質工程一體化關鍵技術. 天然氣工業, 2021, 41(1):72 [68] Fan H F, Zang Y B, Zhang J C, et al. Technical difficulties and countermeasures of deep shale gas drilling. Drill Prod Technol, 2019, 42(3): 20 doi: 10.3969/J.ISSN.1006-768X.2019.03.06樊好福, 臧艷彬, 張金成, 等. 深層頁巖氣鉆井技術難點與對策. 鉆采工藝, 2019, 42(3):20 doi: 10.3969/J.ISSN.1006-768X.2019.03.06 [69] Zhang X F, Duan Y X, Zhao X M. Drilling technology for shale gas wells in southern Sichuan. Petrochem Ind Technol, 2019, 26(5): 143 doi: 10.3969/j.issn.1006-0235.2019.05.088張小鋒, 段元向, 趙小猛. 川南頁巖氣井鉆井工藝配套技術. 石化技術, 2019, 26(5):143 doi: 10.3969/j.issn.1006-0235.2019.05.088 [70] China Petroleum Association. The unique technology of Chuanqing drilling shortens the shale gas drilling cycle by 50%. China Petroleum News, 2018-10-11(8)中國石油協會. 川慶鉆探特色技術縮短頁巖氣鉆井周期50%. 中國石油報, 2018-10-11(8) [71] Zang Y B. Key drilling technology for deep shale gas reservoirs in the southeastern Sichuan region. Petroleum Drill Tech, 2018, 46(3): 7臧艷彬. 川東南地區深層頁巖氣鉆井關鍵技術. 石油鉆探技術, 2018, 46(3):7 [72] Ma X H, Xie J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China. Petroleum Explor Dev, 2018, 45(1): 161馬新華, 謝軍. 川南地區頁巖氣勘探開發進展及發展前景. 石油勘探與開發, 2018, 45(1):161 [73] Zhao H, Si X Q, Wang A F. Water-based drilling fluid and its application to China shale gas reservoirs. Nat Gas Explor Dev, 2018, 41(1): 90趙虎, 司西強, 王愛芳. 國內頁巖氣水基鉆井液研究與應用進展. 天然氣勘探與開發, 2018, 41(1):90 [74] Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ). Petroleum Explor Dev, 2016, 43(2): 166 doi: 10.11698/PED.2016.02.02鄒才能, 董大忠, 王玉滿, 等. 中國頁巖氣特征、挑戰及前景(二). 石油勘探與開發, 2016, 43(2):166 doi: 10.11698/PED.2016.02.02 [75] Yang B Z, Wang L, Chen L, et al. Rapid drilling technology for super long horizontal wells in Zhaotong shale gas block. China Petroleum Chem Stand Qual, 2019, 39(3): 245楊博仲, 王力, 陳磊, 等. 昭通頁巖氣區塊超長水平井快速鉆井技術. 中國石油和化工標準與質量, 2019, 39(3):245 [76] Zeng Y. The deepest shale gas well of PetroChina drilled by southwest oil & gas field. Nat Gas Oil, 2019, 37(3): 82曾妍. 西南油氣田鉆成中國石油最深頁巖氣井. 天然氣與石油, 2019, 37(3):82 [77] Wu Q, Liang X, Xian C G, et al. Geoscience-to-production integration ensures effective and efficient South China marine shale gas development. China Petroleum Explor, 2015, 20(4): 1 doi: 10.3969/j.issn.1672-7703.2015.04.001吳奇, 梁興, 鮮成鋼, 等. 地質—工程一體化高效開發中國南方海相頁巖氣. 中國石油勘探, 2015, 20(4):1 doi: 10.3969/j.issn.1672-7703.2015.04.001 [78] Han L X, Sun H F. Study on factory-like drilling mode for shale gas in Changning. Drill Prod Technol, 2016, 39(6): 1 doi: 10.3969/J.ISSN.1006-768X.2016.06.01韓烈祥, 孫海芳. 長寧頁巖氣工廠化鉆井模式研究. 鉆采工藝, 2016, 39(6):1 doi: 10.3969/J.ISSN.1006-768X.2016.06.01 [79] Zhao G Y. Deployment and optimization of “factory-like” horizontal well: A case study on Weiyuan shale gas reservoirs, Sichuan Basin. Nat Gas Explor Dev, 2018, 41(1): 51趙國英. 水平井“工廠化”部署與設計優化——以四川威遠頁巖氣藏為例. 天然氣勘探與開發, 2018, 41(1):51 [80] Liang X, Wang G C, Zhang J H, et al. High-efficiency integrated shale gas development model of Zhaotong National Demonstration Zone and its practical enlightenment. China Petroleum Explor, 2017, 22(1): 29 doi: 10.3969/j.issn.1672-7703.2017.01.005梁興, 王高成, 張介輝, 等. 昭通國家級示范區頁巖氣一體化高效開發模式及實踐啟示. 中國石油勘探, 2017, 22(1):29 doi: 10.3969/j.issn.1672-7703.2017.01.005 [81] Ma Y S, Cai X Y, Zhao P R. China’s shale gas exploration and development: Understanding and practice. Petroleum Explor Dev, 2018, 45(4): 561馬永生, 蔡勛育, 趙培榮. 中國頁巖氣勘探開發理論認識與實踐. 石油勘探與開發, 2018, 45(4):561 [82] Zhao J Z, Ren L, Shen C, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs. Nat Gas Ind, 2018, 38(3): 1 doi: 10.3787/j.issn.1000-0976.2018.03.001趙金洲, 任嵐, 沈騁, 等. 頁巖氣儲層縫網壓裂理論與技術研究新進展. 天然氣工業, 2018, 38(3):1 doi: 10.3787/j.issn.1000-0976.2018.03.001 [83] Rafiee M, Soliman M Y, Pirayesh E. Hydraulic fracturing design and optimization: a modification to zipper frac // SPE Annual Technical Conference and Exhibition. San Antonio, 2012: 159786 [84] Guan B S, Liu Y T, Liang L, et al. Shale oil reservoir reconstruction and efficient development technology. Oil Drill Prod Technol, 2019, 41(2): 212管保山, 劉玉婷, 梁利, 等. 頁巖油儲層改造和高效開發技術. 石油鉆采工藝, 2019, 41(2):212 [85] Zhang S H. Integrated management of shale gas operation based on well integrity technology and standard. Oil Drill Prod Technol, 2019, 41(2): 184張紹槐. 用井筒完整性技術與標準一體化管理頁巖氣作業. 石油鉆采工藝, 2019, 41(2):184 [86] Zhang S H. Selected Papers on Petroleum Drilling and Completion. Beijing: Petroleum Industry Press, 2018張紹槐. 石油鉆井完井文集. 北京: 石油工業出版社, 2018 [87] Yang G F, Zhou Q F, Li Y. Technological progress in Re-fracturing of US shale oil and gas wells for higher production factor. Oil Forum, 2016, 35(2): 46楊國豐, 周慶凡, 李穎. 美國頁巖油氣井重復壓裂提高采收率技術進展及啟示. 石油科技論壇, 2016, 35(2):46 [88] Xie J. Practices and achievements of the Changning–Weiyuan shale gas national demonstration project construction. Nat Gas Ind, 2018, 38(2): 1謝軍. 長寧——威遠國家級頁巖氣示范區建設實踐與成效. 天然氣工業, 2018, 38(2):1 -