Experimental research on the comprehensive utilization of valuable components and centralized removal of harmful elements in waste acid
-
摘要: 目前我國大型冶煉企業產生的污酸均被當做一種高濃度重金屬廢水來處理,不僅需要高額的廢水處理費用,而且還會產生大量的廢水處理渣。結合污酸及氧化鋅煙灰的主要成份,采用循環浸出工藝,利用污酸對氧化鋅煙灰進行浸出,浸出完全后,綜合回收浸出液中的Cu、Zn、As。實驗研究了終點pH、浸出溫度、浸出時間對污酸一次浸出和二次循環浸出的影響,以及雙氧水加入量、溫度、時間對一次除As的影響和硫化鈉加入量、溫度、時間對二次除As的影響。實驗表明:最佳一次浸出條件為終點pH值為1.5、反應溫度為85 ℃、反應時間為5 h;最佳二次循環浸出條件為終點pH值為4、反應溫度為85 ℃;最佳一次除As條件為每毫升二次循環浸出液添加0.067 mL雙氧水、反應溫度為40 ℃、反應時間為1.5 h;最佳二次除As條件為每毫升一次除As后液添加0.02 g硫化鈉、反應溫度為35 ℃、反應時間為2 h。污酸綜合利用后, 原來的高濃度重金屬廢水變成了中性廢水,其中的重金屬(As、Cu、Zn)質量濃度分別降至3.26、2.63和50.63 mg·L?1,稍加處理即可達到污水綜合排放標準。此工藝既綜合回收了污酸和氧化鋅煙灰中的有價成份,又集中處理了有害元素As,消減了危險廢物的產生量,達到了節能減排的目的。Abstract: Currently in China, the waste acid generated from large-scale smelting plants is treated as “wastewater with high concentration of heavy metals”, which leads to high cost and many wastewater treatment residues (hazardous wastes). In this paper, based on the main components of waste acid and zinc oxide dust, the adoption of a cyclic leaching process was proposed, in which zinc oxide dust is leached by waste acid, thus enabling the recovery of copper (Cu) and zinc (Zn) from the circulating leaching solution and the central treatment of arsenic (As). The main factors affecting the first and second cyclic leaching processes were investigated, including the final pH, leaching temperature, and leaching time. After leaching was completed, several factors in the first and second As removal processes were investigated, including the H2O2 dosage, Na2S dosage, removal temperature, and removal time. The following optimal conditions were identified: the optimal final pH, leaching temperature, and leaching time for the first leaching are 1.5, 85 ℃, and 5 h, respectively. The optimal final pH and leaching temperature for the second leaching are 4 and 85 ℃, respectively. The optimal H2O2 dosage, removal temperature, and removal time for the first As removal are 0.067 mL per 1 mL of the secondary circulation leaching solution, 40 ℃, and 1.5 h, respectively. The optimal Na2S dosage for the second arsenic removal is 0.02 mL per 1 mL of the second circulation leaching solution, and the removal temperature and removal time were determined to be 35 ℃ and 2 h, respectively. Under these conditions, the concentrations of As, Cu, and Zn can be reduced to 3.26, 2.63, and 50.63 mg·L?1, respectively. The pH of the wastewater after processing was neutral, which meets the integrated wastewater discharge standard with minor treatment. In this way, valuable components in the waste acid can be comprehensively recovered, and the harmful element As centrally treated, thus reducing the production of hazardous wastes, saving energy, and reducing emissions.
-
Key words:
- waste acid /
- comprehensive utilization /
- high-concentration waste water /
- arsenic /
- zinc oxide dust
-
表 1 污酸主要成分
Table 1. Chemical composition of waste acid
g·L?1 H2SO4 As Cu Fe Zn 223.36 4.57 0.49 0.36 0.22 表 2 氧化鋅煙灰主要成分
Table 2. Chemical composition of zinc oxide dust
% As Cu Fe Zn Pb 2.33 0.89 4.62 50.52 11.18 259luxu-164 -
參考文獻
[1] Yang Y, Deng Z G, We C, et al. Preparation of iron oxide red by sinking iron slag in zinc smelting hematite process. Chin J Eng, 2020, 42(10): 1325楊源, 鄧志敢, 魏昶, 等. 利用濕法煉鋅赤鐵礦法沉鐵渣制備鐵紅工藝. 工程科學學報, 2020, 42(10):1325 [2] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143 [3] Ma Z X. Operation and practice of heavy metal waste water treatment in large scale nonferrous metal metallurgy factory. World Nonferrous Met, 2016(19): 67馬忠旭. 大型有色金屬冶金廠重金屬廢水處理的運行與實踐. 世界有色金屬, 2016(19):67 [4] Chen W P, Li Z Y, Bian K J, et al. Application of wet-method for extracting arsenic in treating industrial wastewater and residues. China Environ Sci, 1999, 19(4): 310陳維平, 李仲英, 邊可君, 等. 濕式提砷法在處理工業廢水及廢渣中的應用. 中國環境科學, 1999, 19(4):310 [5] Chen G Q. Experimental study on recovery of valuable metals in heavy metal smelting waste water. China Min Mag, 2018, 27(Suppl2): 56陳國強. 重金屬火法冶煉污酸廢水中有價金屬回收實驗研究. 中國礦業, 2018, 27(增刊2): 56 [6] Cai G Y, Zhu X, Li K Z, et al. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator. Water Res, 2019, 157: 269 doi: 10.1016/j.watres.2019.03.067 [7] Cao J Y, Zhang K L, Li Y Y, et al. Arsenic removal by scorodite synthesis using ozone oxidation. Chin J Process Eng, 2018, 18(3): 517曹俊雅, 張凱倫, 李媛媛, 等. 臭氧氧化合成臭蔥石除砷. 過程工程學報, 2018, 18(3):517 [8] Men Y, Li H M, Otgon N, et al. Removal of arsenic from wastewater by multi-stage precipitation. Chin J Process Eng, 2017, 17(2): 259門玉, 李洪枚, Otgon Nasantogtokh, 等. 多級沉淀法處理含砷廢水. 過程工程學報, 2017, 17(2):259 [9] Hao F Y, Zhu X, Qi X J, et al. Steel slag modification and its influence on arsenic removal from waste acid. Chin J Nonferrous Met, 2020, 30(7): 1703郝峰焱, 祝星, 祁先進, 等. 鋼渣改性對污酸除砷的影響. 中國有色金屬學報, 2020, 30(7):1703 [10] Yang G F, Fan J H. The harmless treatment of arsenic-containing wastewater. Mod Metall, 2019, 47(2): 59楊桂芳, 范家驊. 含砷廢水的無害化處理. 現代冶金, 2019, 47(2):59 [11] Xia X Y. Experimental research of treatment of high concentration of trivalent as-containing wastewater by the catalytic oxidation-cupric salt. Environ Prot Technol, 2018, 24(3): 12夏薪怡. 石灰–銅鹽–氧化法處理高濃度含砷廢水的實驗研究. 環保科技, 2018, 24(3):12 [12] Li W P, Nan J F, Zhang K R, et al. Study on reduction and resource treatment of waste acid wastewater from non-ferrous metallurgy. Sulphuric Acid Ind, 2019(7): 11李維平, 南君芳, 張克榮, 等. 有色冶煉廢酸廢水減量化和資源化處理的研究. 硫酸工業, 2019(7):11 [13] Liu P C, Yang H T, Chen Y F, et al. Removal of arsenic in wastewater by peroxidation-calcium salt method. Hydrometall China, 2017, 36(6): 493劉鵬程, 陽海棠, 陳藝鋒, 等. 預氧化-鈣鹽法處理含砷廢水試驗研究. 濕法冶金, 2017, 36(6):493 [14] Xi Y H, Zou J T, Luo Y G, et al. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron. Chem Eng J, 2019, 375: 121928 doi: 10.1016/j.cej.2019.121928 [15] Wang W K, Yan L, Duan J M, et al. Arsenite adsorption removal from acid wastewater using titanium dioxide adsorption filter column. Chin J Environ Eng, 2017, 11(3): 1322王文凱, 閻莉, 段晉明, 等. 二氧化鈦濾柱對高砷污酸廢水的吸附去除. 環境工程學報, 2017, 11(3):1322 [16] Yang D Z, Sasaki A, Endo M. Reclamation of a waste arsenic-bearing gypsum as a soil conditioner via acid treatment and subsequent Fe(II) as stabilization. J Clean Prod, 2019(217): 22 [17] Sullivan C, Tyrer M, Cheeseman C R, et al. Disposal of water treatment wastes containing arsenic — A review. Sci Total Environ, 2010, 408: 1770 doi: 10.1016/j.scitotenv.2010.01.010 [18] Yang K, Qin W Q, Liu W. Extraction of elemental arsenic and regeneration of calcium oxide from waste calcium arsenate produced from wastewater treatment. Miner Eng, 2019, 134: 309 doi: 10.1016/j.mineng.2019.02.022 [19] Mikula K, Izydorczyk G, Skrzypczak D, et al. Value-added strategies for the sustainable handling, disposal, or value-added use of copper smelter and refinery wastes. J Hazard Mater, 2021, 403: 123602 doi: 10.1016/j.jhazmat.2020.123602 [20] Shu B, Zhou S, Zhang B H, et al. Treatment of arsenic containing waste acid and development of arsenic fixation technology in nonferrous smelting. Conserv Util Miner Resour, 2020, 40(3): 12舒波, 周尚, 張寶輝, 等. 有色冶煉含砷污酸處置及固砷技術進展. 礦產保護與利用, 2020, 40(3):12 [21] Zeng T, Deng Z G, Zhang F, et al. Recovery of copper and iron from zinc Waelz slag by waste acid. Nonferrous Met Eng, 2020, 10(7): 61曾濤, 鄧志敢, 張帆, 等. 采用鋅冶煉窯渣處理污酸回收銅鐵技術. 有色金屬工程, 2020, 10(7):61 [22] Li Y K, Zhu X, Qi X J, et al. Reaction behavior of copper slag with waste acid and its arsenic removal mechanism. China Environ Sci, 2019, 39(10): 4228李永奎, 祝星, 祁先進, 等. 銅渣與含砷污酸反應行為及除砷機理. 中國環境科學, 2019, 39(10):4228 [23] Zhou A L, Li T Y, Li G M, et al. The experiment study on recovery of copper and arsenic from the White fume lixivium. China Resour Comprehens Util, 2019, 37(12): 13周安梁, 李田玉, 李光明, 等. 白煙塵浸出液的銅砷回收試驗研究. 中國資源綜合利用, 2019, 37(12):13 [24] Yuan H B. Thermodynamics research and experiment of white arsenic extraction from high arsenic fume by pyrometallurgy. Yunnan Metall, 2011, 40(6): 27袁海濱. 高砷煙塵火法提取白砷實驗及熱力學研究. 云南冶金, 2011, 40(6):27 [25] Zhao Y, Xing J, An J Q, et al. Study on reduction roasting of zinc – smelting – sludge in rotary kiln and dust recycling. Nonferrous Met (Extract Metall) , 2017(2): 10趙楊, 邢杰, 安俊菁, 等. 回轉窯還原焙燒鋅冶煉污泥與煙塵回收研究. 有色金屬(冶煉部分), 2017(2):10 [26] Di J H, Pan C C, Pang J M, et al. Technology and application of cooperative disposal of zinc solid waste by direct reduction rotary kiln. China Metall, 2019, 29(10): 71邸久海, 潘聰超, 龐建明, 等. 直接還原回轉窯協同處理含鋅固廢技術及應用. 中國冶金, 2019, 29(10):71 [27] Le T Q X, Liu C, Ju S H, et al. Deep removal of iron from jarosite residue after acid mixing, microwave roasting and water leaching. Chin J Eng, 2015, 37(9): 1138黎氏瓊春, 劉超,巨少華, 等. 鐵礬渣微波硫酸化焙燒水浸液的深度除鐵. 工程科學學報, 2015, 37(9):1138 [28] Li X G, Tan Y R, Liang D Q, et al. Arsenic direct recovery from arsenic-bearing zinc sulfide concentrates. Nonferrous Met (Extract Metall) , 2012(1): 13李旭光, 譚永仁, 梁鐸強, 等. 從硫化鋅精礦中直接回收砷. 有色金屬(冶煉部分), 2012(1):13 -