<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于雙維度搜索的地下自主鏟運機最優轉彎軌跡規劃

顧青 劉立 白國星 孟宇

顧青, 劉立, 白國星, 孟宇. 基于雙維度搜索的地下自主鏟運機最優轉彎軌跡規劃[J]. 工程科學學報, 2021, 43(2): 289-298. doi: 10.13374/j.issn2095-9389.2020.11.09.002
引用本文: 顧青, 劉立, 白國星, 孟宇. 基于雙維度搜索的地下自主鏟運機最優轉彎軌跡規劃[J]. 工程科學學報, 2021, 43(2): 289-298. doi: 10.13374/j.issn2095-9389.2020.11.09.002
GU Qing, LIU Li, BAI Guo-xing, MENG Yu. Optimal turning trajectory planning of an LHD based on a bidimensional search[J]. Chinese Journal of Engineering, 2021, 43(2): 289-298. doi: 10.13374/j.issn2095-9389.2020.11.09.002
Citation: GU Qing, LIU Li, BAI Guo-xing, MENG Yu. Optimal turning trajectory planning of an LHD based on a bidimensional search[J]. Chinese Journal of Engineering, 2021, 43(2): 289-298. doi: 10.13374/j.issn2095-9389.2020.11.09.002

基于雙維度搜索的地下自主鏟運機最優轉彎軌跡規劃

doi: 10.13374/j.issn2095-9389.2020.11.09.002
基金項目: 國家重點研發計劃資助項目(2018YFC0810500, 2019YFC0605300);廣東省基礎與應用基礎研究基金資助項目(2019A1515111015)
詳細信息
    通訊作者:

    E-mail: myu@ustb.edu.cn

  • 中圖分類號: TP202.7

Optimal turning trajectory planning of an LHD based on a bidimensional search

More Information
  • 摘要: 提出了一種基于雙維度搜索的實時軌跡規劃方法,用來解決自主地下鏟運機轉彎軌跡規劃問題。該方法是一種結合采樣思想和最優化算法的復合軌跡規劃方法,包含三個主要步驟:基于雙維度搜索策略的優化模型參數生成,基于二次規劃的軌跡計算,以及基于約束檢查的最優軌跡確定。該方法新穎之處在于提出的基于轉彎區域行駛時間和里程的雙維度搜索策略,以及基于平穩目標的軌跡最優化模型,可根據彎道區域入口速度和位置,快速生成縱橫向都有最優性保證的最優軌跡。該方法結構簡單、易于實施,可通過關鍵參數的調整滿足控制器對軌跡生成速度的實時性要求。基于該軌跡規劃方法的特點,使其不僅適用于實時軌跡規劃,還可為未來智慧礦山的智能管控與優化調度提供底層約束。多組算例驗證了該方法的有效性和優越性。

     

  • 圖  1  LHD結構

    Figure  1.  Structure of an LHD

    圖  2  地下巷道轉彎區域。(a)磨角之前的轉彎區域;(b)磨角之后的轉彎區域

    Figure  2.  Roadway tuning area: (a) before grinding; (b) after grinding

    圖  3  雙維度搜索軌跡規劃方法流程圖

    Figure  3.  Flow chart for the two-dimensional search-based trajectory planning method

    圖  4  位置曲線(${y_{{\rm{in}}}} = 2.5,{v_{{x_{{\rm{in}}}}}} = 2$

    Figure  4.  Position trajectory (${y_{{\rm{in}}}} = 2.5,{v_{{x_{{\rm{in}}}}}} = 2$)

    圖  5  行駛方向速度曲線(${y_{{\rm{in}}}} = 2.5,{v_{{x_{{\rm{in}}}}}} = 2$

    Figure  5.  Heading velocity trajectory (${y_{{\rm{in}}}} = 2.5,{v_{{x_{{\rm{in}}}}}} = 2$)

    圖  6  鉸接角、前后車體航向角及角速度(${y_{{\rm{in}}}} = 2.5,{v_{{x_{{\rm{in}}}}}} = 2$

    Figure  6.  Angle and angular velocity for $\gamma $, ${\theta _{\rm{f}}}$ and ${\theta _{\rm{r}}}$(${y_{{\rm{in}}}} = 2.5,{v_{{x_{{\rm{in}}}}}} = 2$)

    圖  7  位置曲線(${T_i} = 70\;{\rm{s}}$

    Figure  7.  Position trajectory (${T_i} = 70\;{\rm{s}}$)

    圖  8  行駛方向速度曲線(${T_i} = 70\;{\rm{s}}$

    Figure  8.  Heading velocity trajectory (${T_i} = 70\;{\rm{s}}$)

    圖  9  鉸接角、前后車體航向角及角速度(${T_i} = 70\;{\rm{s}}$

    Figure  9.  Angle and angular velocity for $\gamma $, ${\theta _{\rm{f}}}$, and ${\theta _{\rm{r}}}$(${T_i} = 70\;{\rm{s}}$)

    圖  10  位置曲線(出口位置為(32.25, 35))

    Figure  10.  Position trajectory (exit position is (32.25, 35))

    圖  11  行駛方向速度曲線(出口位置為(32.25, 35))

    Figure  11.  Heading velocity trajectory (exit position is (32.25, 35))

    圖  12  鉸接角、前后車體航向角及角速度(出口位置為(32.25, 35))

    Figure  12.  Angle and angular velocity for $\gamma $, ${\theta _{\rm{f}}}$, and ${\theta _{\rm{r}}}$ (exit position is (32.25, 35))

    圖  13  鉸接車試驗平臺

    Figure  13.  Articulated vehicle

    圖  14  參考速度和航向角曲線

    Figure  14.  Reference trajectory for velocity and heading

    圖  15  速度和航向角跟蹤誤差

    Figure  15.  Tracking Errors trajectory for velocity and heading

    表  1  算例參數表

    Table  1.   Parameters for case studies

    ${W_{\rm{A}}}$/m${W_{\rm{B}}}$/m${L_{\rm{A}}}$/m${L_{\rm{B}}}$/m$\alpha $/rad${L_{{\rm{safe}}}}$/m$\Delta v$/(m·s?1$\Delta d$/(m·s?1$m$
    54.53030${\text{π}}/2$1.50.10.54
    ${L_{\rm{f}}}$/m${L_{\rm{r}}}$/m${\gamma _{\min }}$/rad${\gamma _{\max }}$/rad${\dot \gamma _{\min }}$/(rad·s?1${\dot \gamma _{\min }}$/(rad·s?1$L_{\rm{A}}'$/m$L_{\rm{B}}'$/m$N$
    1.52?0.690.69?0.170.17242433
    下載: 導出CSV

    表  2  第一組算例結果

    Table  2.   Results of the first group

    ${v_{{\rm{in}}}}$/(m·s?1$i$$j$${T_{{\rm{best}}}}$/s${\gamma _{\max }}$/rad${\dot \gamma _{\max }}$/(rad·s?1
    12366.670.510.06
    27442.840.510.06
    313433.330.470.06
    417428.540.420.06
    下載: 導出CSV

    表  3  第二組算例結果

    Table  3.   Results of the second group

    ${v_{{\rm{in}}}}$/(m·s?1$i$$j$${T_{{\rm{best}}}}$/s${\gamma _{\max }}$/rad${\dot \gamma _{\max }}$/(rad·s?1
    12366.670.510.06
    27442.840.530.06
    313433.330.50.07
    417428.540.450.08
    下載: 導出CSV

    表  4  第三組算例結果

    Table  4.   Results of the third group

    ${v_{{\rm{in}}}}$/(m·s?1$i$$j$${T_{{\rm{best}}}}$/s${\gamma _{\max }}$/rad${\dot \gamma _{\max }}$/(rad·s?1
    12366.670.530.06
    27442.840.560.07
    313433.330.530.08
    417428.540.480.09
    下載: 導出CSV

    表  5  試驗參數表

    Table  5.   Parameters for experiments

    ${W_{\rm{A}}}$/m${W_{\rm{B}}}$/m${L_{\rm{A}}}$/m${L_{\rm{B}}}$/m$\alpha $/rad${L_{{\rm{safe}}}}$/m$\Delta v$/(m·s?1$\Delta d$/(m·s?1$m$
    2.22.23.63.6${{\text{π}}{ /2}}$0.30.10.83
    ${L_{\rm{f}}}$/m${L_{\rm{r}}}$/m${\gamma _{\min }}$/rad${\gamma _{\max }}$/rad${\dot \gamma _{\min }}$/(rad·s?1${\dot \gamma _{\min }}$/(rad·s?1$L_{\rm{A}}'$/m$L_{\rm{B}}'$/m$N$
    0.60.6?0.690.69?0.170.173.63.633
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] M?kel? H, Lehtinen H, Rintanen K, et al. Navigation system for LHD machines. IFAC Proc Vol, 1995, 28(11): 295
    [2] Roberts J M, Duff E S, Corke P I. Reactive navigation and opportunistic localization for autonomous underground mining vehicles. Inf Sci, 2002, 145(1-2): 127 doi: 10.1016/S0020-0255(02)00227-X
    [3] Dragt B J, Camisani-Calzolari F R, Craig I K. An overview of the automation of load-haul-dump vehicles in an underground mining environment. IFAC Proc Vol, 2005, 38(1): 37
    [4] Larsson J, Broxvall M, Saffiotti A. A navigation system for automated loaders in underground mines // Proceedings of the 5th International Conference on Field and Service Robotics (FSR-2005). Port Douglas, 2005: 1
    [5] Shi F, Gu H S, Zhan K, et al. Study on the control method of underground loader autonomous driving and obstacle avoidance. Nonferrous Met (Mine Sect), 2015, 67(5): 68

    石峰, 顧洪樞, 戰凱, 等. 地下鏟運機自主行駛與避障控制方法研究. 有色金屬(礦山部分), 2015, 67(5):68
    [6] Yang C, Chen S X, Liu L, et al. Reactive navigation for underground autonomous scraper. J China Coal Soc, 2011, 36(11): 1943

    楊超, 陳樹新, 劉立, 等. 反應式導航在地下自主行駛鏟運機中的應用. 煤炭學報, 2011, 36(11):1943
    [7] Long Z Z, Zhan K, Gu H S, et al. The control method based on improved fuzzy-PID algorithm for the autonomous driving of intelligent LHD. Nonferrous Met (Mine Sect), 2015, 67(5): 76

    龍智卓, 戰凱, 顧洪樞, 等. 基于改進模糊PID算法的智能鏟運機自主行駛控制方法. 有色金屬(礦山部分), 2015, 67(5):76
    [8] Andersson U, Mrozek K, Hyypp? K, et al. Path design and control algorithms for articulated mobile robots // Field and Service Robotics. London, 1998: 390
    [9] Long Z Z, Zhan K, Gu H S, et al. Global path planning of intelligent load-haul-dump based on improved ant colony algorithm. Nonferrous Met (Mine Sect), 2013, 65(2): 6

    龍智卓, 戰凱, 顧洪樞, 等. 基于改進蟻群算法的智能鏟運機全局路徑規劃. 有色金屬(礦山部分), 2013, 65(2):6
    [10] Shi F, Gu H S, Zhan K, et al. The basic method study on the location-navigation and control strategy for the independent LHD unit. Nonferrous Met (Mine Sect), 2009, 61(2): 65

    石峰, 顧洪樞, 戰凱, 等. 自主鏟運機的定位導航和控制策略基本思路. 有色金屬(礦山部分), 2009, 61(2):65
    [11] Jiang C, Wang H W, Li J K, et al. Trajectory-tracking hybrid controller based on ADRC and adaptive control for unmanned helicopters. Chin J Eng, 2017, 39(11): 1743

    姜辰, 王浩文, 李健珂, 等. 無人直升機自抗擾自適應軌跡跟蹤混合控制. 工程科學學報, 2017, 39(11):1743
    [12] Invernizzi D, Lovera M, Zaccarian L. Dynamic attitude planning for trajectory tracking in thrust-vectoring UAVs. IEEE Trans Autom Control, 2020, 65(1): 453 doi: 10.1109/TAC.2019.2919660
    [13] Ziegler J, Bender P, Dang T, et al. Trajectory planning for Bertha — A local, continuous method // 2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, 2014: 450
    [14] Ziegler J, Bender P, Schreiber M, et al. Making bertha drive—an autonomous journey on a historic route. IEEE Intell Transp Syst Mag, 2014, 6(2): 8
    [15] Liu C L, Lin C Y, Tomizuka M. The convex feasible set algorithm for real time optimization in motion planning. SIAM J Control Optim, 2018, 56(4): 2712
    [16] Liu C L, Lin C Y, Wang Y Z, et al. Convex feasible set algorithm for constrained trajectory smoothing // 2017 American Control Conference (ACC). Seattle, 2017: 4177
    [17] Liu C L, Tomizuka M. Real time trajectory optimization for nonlinear robotic systems: Relaxation and convexification. Syst Control Lett, 2017, 108: 56 doi: 10.1016/j.sysconle.2017.08.004
    [18] Chen J Y, Zhan W, Tomizuka M. Autonomous driving motion planning with constrained iterative LQR. IEEE Trans Intell Veh, 2019, 4(2): 244 doi: 10.1109/TIV.2019.2904385
    [19] Li B, Wang K X, Shao Z J. Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic optimization approach. IEEE Trans Intell Transp Syst, 2016, 17(11): 3263 doi: 10.1109/TITS.2016.2546386
    [20] Huang Y J, Wang H, Khajepour A, et al. A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control. IEEE Trans Veh Technol, 2020, 69(1): 55 doi: 10.1109/TVT.2019.2945934
    [21] Huang Y J, Ding H T, Zhang Y B, et al. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Trans Ind Electron, 2020, 67(2): 1376 doi: 10.1109/TIE.2019.2898599
    [22] McNaughton M, Urmson C, Dolan J M, et al. Motion planning for autonomous driving with a conformal spatiotemporal lattice // 2011 IEEE International Conference on Robotics and Automation. Shanghai, 2011: 4889
    [23] Li X H, Sun Z P, Cao D P, et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mech Syst Signal Process, 2017, 87: 118 doi: 10.1016/j.ymssp.2015.10.021
    [24] Li X H, Sun Z P, Cao D P, et al. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications. IEEE/ASME Trans Mechatron, 2016, 21(2): 740 doi: 10.1109/TMECH.2015.2493980
    [25] Xu W D, Wei J Q, Dolan J M, et al. A real-time motion planner with trajectory optimization for autonomous vehicles // 2012 IEEE International Conference on Robotics and Automation. Saint Paul, 2012: 2061
    [26] Lim W, Lee S, Sunwoo M, et al. Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans Intell Transp Syst, 2018, 19(2): 613
    [27] Werling M, Ziegler J, Kammel S, et al. Optimal trajectory generation for dynamic street scenarios in a Frenét Frame // 2010 IEEE International Conference on Robotics and Automation. Anchorage, 2010: 987
    [28] Werling M, Kammel S, Ziegler J, et al. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int J Rob Res, 2012, 31(3): 346 doi: 10.1177/0278364911423042
    [29] Fan H Y, Zhu F, Liu C C, et al. Baidu Apollo EM Motion Planner [J/OL]. arXiv preprint (2018-07-20) [2020-11-08]. https://arxiv.org/pdf/1807.08048.pdf
    [30] Nilsson J, Br?nnstr?m M, Fredriksson J, et al. Longitudinal and lateral control for automated yielding maneuvers. IEEE Trans Intell Transp Syst, 2016, 17(5): 1404 doi: 10.1109/TITS.2015.2504718
    [31] Gu Q, Liu L, Bai G X, et al. Longitudinal and lateral trajectory planning for the typical duty cycle of autonomous load haul dump. IEEE Access, 2019, 7: 126679
    [32] Zheng H Y, Zhou J, Shao Q, et al. Investigation of a longitudinal and lateral lane-changing motion planning model for intelligent vehicles in dynamical driving environments. IEEE Access, 2019, 7: 44783 doi: 10.1109/ACCESS.2019.2909273
  • 加載中
圖(15) / 表(5)
計量
  • 文章訪問數:  1045
  • HTML全文瀏覽量:  744
  • PDF下載量:  52
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-09
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回