<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鞍山式貧赤鐵礦不同種類分選尾礦中鐵的賦存規律

張瑞洋 毛宇宇 李正要 李東 張學進

張瑞洋, 毛宇宇, 李正要, 李東, 張學進. 鞍山式貧赤鐵礦不同種類分選尾礦中鐵的賦存規律[J]. 工程科學學報, 2021, 43(10): 1304-1311. doi: 10.13374/j.issn2095-9389.2020.10.28.008
引用本文: 張瑞洋, 毛宇宇, 李正要, 李東, 張學進. 鞍山式貧赤鐵礦不同種類分選尾礦中鐵的賦存規律[J]. 工程科學學報, 2021, 43(10): 1304-1311. doi: 10.13374/j.issn2095-9389.2020.10.28.008
ZHANG Rui-yang, MAO Yu-yu, LI Zheng-yao, LI Dong, ZHANG Xue-jin. Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite[J]. Chinese Journal of Engineering, 2021, 43(10): 1304-1311. doi: 10.13374/j.issn2095-9389.2020.10.28.008
Citation: ZHANG Rui-yang, MAO Yu-yu, LI Zheng-yao, LI Dong, ZHANG Xue-jin. Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite[J]. Chinese Journal of Engineering, 2021, 43(10): 1304-1311. doi: 10.13374/j.issn2095-9389.2020.10.28.008

鞍山式貧赤鐵礦不同種類分選尾礦中鐵的賦存規律

doi: 10.13374/j.issn2095-9389.2020.10.28.008
基金項目: 國家自然科學基金青年科學基金資助項目(51904020);中央高校基本科研業務費資助項目(FRF-TP-19-033A2)
詳細信息
    通訊作者:

    E-mail: zyli0213@sina.com

  • 中圖分類號: TD92;TD951.1

Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite

More Information
  • 摘要: 以齊大山鐵礦選礦分廠鐵尾礦為例,對重選尾礦、磁選尾礦、浮選尾礦和綜合尾礦4種不同種類尾礦的工藝礦物學性質進行對比分析,并對尾礦中鐵的可回收性進行評價。研究結果表明,尾礦中鐵礦物主要為赤鐵礦,脈石礦物主要是石英,有害元素S、P的含量低;尾礦中鐵的金屬分布率隨著粒級的變化,呈兩端高、中間低的規律。重選尾礦中鐵礦物主要包裹在粗顆粒脈石中,浮選尾礦中鐵礦物主要賦存在細顆粒連生體中,磁選尾礦中的鐵礦物粒度極細,綜合尾礦粒度范圍寬、粒度分布極不均勻。采用單一重選和磁選方法對不同種類尾礦進行再選,浮選尾礦指標最佳,重選尾礦次之,綜合尾礦最差,磁選尾礦屬于不可選。鞍山式貧赤鐵礦分選尾礦中鐵的賦存狀態決定了鐵的再回收潛力,可為此類分選尾礦的處理提供理論借鑒。

     

  • 圖  1  鞍山式貧赤鐵礦分選的原則流程及取樣點分布

    Figure  1.  Principle flowsheet and sampling point distribution of Anshan-type low-grade hematite

    圖  2  不同種類尾礦的XRD分析結果

    Figure  2.  XRD results of different tailings

    圖  3  尾礦中鐵的礦物組成分析

    Figure  3.  Mineral composition analysis of iron in different tailings

    圖  4  不同種類尾礦中鐵的磁性率

    Figure  4.  Magnetic susceptibility of iron in different tailings

    圖  5  尾礦的粒度特性及鐵礦物單體解離情況。(a)重選尾礦;(b)磁選尾礦;(c)浮選尾礦;(d)綜合尾礦

    Figure  5.  Particle size distribution and liberation conditions of iron minerals in different tailings: (a) gravity tailings; (b) magnetic tailings; (c) flotation tailings; (d) mixed tailings

    圖  6  尾礦不同粒級中鐵的分布規律。(a)鐵品位;(b)金屬分布率

    Figure  6.  Distribution of iron in tailings with different particle sizes: (a) iron grade; (b) iron distribution

    圖  7  尾礦鏡下觀察。(a)重選尾礦;(b)磁選尾礦;(c)浮選尾礦;(d)綜合尾礦

    Figure  7.  Observation of tailings under microscope: (a) gravity tailings; (b) magnetic tailings; (c) flotation tailings; (d) mixed tailings

    圖  8  重選對不同種類尾礦中鐵的回收效果

    Figure  8.  Effect of gravity separation on iron recovery from different tailings

    1—gravity tailings: shaker; 2—gravity tailings: screening-shaker; 3—magnetic tailings: shaker; 4—flotation tailings: shaker; 5—flotation tailings: classification-shaker; 6—flotation tailings: classification-screening-shaker; 7—mixed tailings: shaker; 8—mixed tailings: classification-shaker; 9—mixed tailings: classification-screening-shaker

    圖  9  弱磁選對不同種類尾礦中鐵的回收效果

    Figure  9.  Effect of low-intensity magnetic separation on iron recovery from different tailings

    1—gravity tailings: magnetic separation; 2—magnetic tailings: magnetic separation; 3—flotation tailings: magnetic separation; 4—flotation tailings: regrinding-magnetic separation; 5—mixed tailings: magnetic separation; 6—mixed tailings: regrinding-magnetic separation

    表  1  不同種類尾礦的化學成分分析(質量分數)

    Table  1.   Chemical element analysis of the different tailings (mass fraction) %

    SampleTFeSiO2Al2O3CaOMgOPMnOS
    Gravity tailings10.4684.270.340.370.690.0170.100.023
    Magnetic tailings7.5183.571.260.621.610.0480.120.017
    Flotation tailings19.8765.381.630.681.710.0230.150.077
    Mixed tailings10.0082.291.070.390.820.0120.0980.026
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ju H X, Hu W T, Liu X W, et al. Reengineering and selective recovery of iron-bearing silicate minerals. Chin J Eng, 2015, 37(10): 1268

    鞠會霞, 胡文韜, 劉欣偉, 等. 含鐵硅酸鹽礦物重構與選擇性回收. 工程科學學報, 2015, 37(10):1268
    [2] Li H M, Zhang Z J, Li L X, et al. Types and general characteristics of the BIF-related iron deposits in China. Ore Geol Rev, 2014, 57: 264 doi: 10.1016/j.oregeorev.2013.09.014
    [3] Zhang Z C, Hou T, Santosh M, et al. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol Rev, 2014, 57: 247 doi: 10.1016/j.oregeorev.2013.08.021
    [4] Zhang D J, Agterberg F, Cheng Q M, et al. A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Math Geosci, 2014, 46(7): 869 doi: 10.1007/s11004-013-9496-8
    [5] Li Z J, Qiao G G, Mi X Y, et al. Energy savings during magnetite ore preparation in eastern Hebei Province. J China Univ Min Technol, 2008, 37(5): 625 doi: 10.3321/j.issn:1000-1964.2008.05.009

    李占金, 喬國剛, 米雪玉, 等. 冀東磁鐵礦石粉碎過程節能降耗研究. 中國礦業大學學報, 2008, 37(5):625 doi: 10.3321/j.issn:1000-1964.2008.05.009
    [6] Yin W Z, Ding Y Z. New Technology and Equipment for Iron Ore Dressing. Beijing: Metallurgical Industry Press, 2008

    印萬忠, 丁亞卓. 鐵礦選礦新技術與新設備. 北京: 冶金工業出版社, 2008
    [7] Yin J N, Lindsay M, Teng S R. Mineral prospectivity analysis for BIF iron deposits: A case study in the Anshan-Benxi area, Liaoning Province, North-East China. Ore Geol Rev, 2020, 120: 102746 doi: 10.1016/j.oregeorev.2018.11.019
    [8] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [9] Li L X, Zhu Y L, Yuan Z T, et al. Mechanism for higher iron grade of reverse flotation tailings of Anshan-type hematite ore. J Northeast Univ Nat Sci, 2013, 34(11): 1647 doi: 10.12068/j.issn.1005-3026.2013.11.030

    李麗匣, 朱玉蘭, 袁致濤, 等. 鞍山式赤鐵礦石反浮選尾礦鐵品位偏高機制. 東北大學學報(自然科學版), 2013, 34(11):1647 doi: 10.12068/j.issn.1005-3026.2013.11.030
    [10] Gao P, Ji X, Ren D Z, et al. Iron recovery from flotation middling produced in carbonates-bearing hematite ore using coal-based reduction. J China Univ Min Technol, 2013, 42(5): 812

    高鵬, 紀新, 任多振, 等. 含碳酸鹽赤鐵礦石浮選中礦深度還原試驗研究. 中國礦業大學學報, 2013, 42(5):812
    [11] Cui B Y, Wei D Z, Li T S, et al. Optimization of beneficiation technology on iron mine from qidashan. Met Mine, 2016(8): 75 doi: 10.3969/j.issn.1001-1250.2016.08.015

    崔寶玉, 魏德洲, 李天舒, 等. 齊大山鐵礦選礦工藝優化研究. 金屬礦山, 2016(8):75 doi: 10.3969/j.issn.1001-1250.2016.08.015
    [12] Tang C, Li K Q, Ni W, et al. Recovering iron from iron ore tailings and preparing concrete composite admixtures. Minerals, 2019, 9(4): 232 doi: 10.3390/min9040232
    [13] Wang Y M, Tian J Y, Wang H J, et al. Beneficiation Practice of Ferrous Metal Ore in China. Beijing: Science Press, 2008

    王運敏, 田嘉印, 王化軍, 等. 中國黑色金屬礦選礦實踐. 北京: 科學出版社, 2008
    [14] Zhang R Y. Experimental Research on Recovery of Iron Contained in the Separation Tailings of Anshan-Type Iron Ore [Dissertation]. Shenyang: Northeastern University, 2011

    張瑞洋. 鞍山式鐵礦石分選尾礦中鐵的回收試驗研究[學位論文]. 沈陽: 東北大學, 2011
    [15] Fan D C. Research on Pre-Concentration and Deep Reduction of Qidashan Iron Ore Tailings and the Comprehensive Utilization of Tailings [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    范敦城. 齊大山鐵尾礦預富集—深度還原提鐵及尾渣綜合利用研究[學位論文]. 北京: 北京科技大學, 2018
    [16] Li J, Ni W, Fan D C, et al. Process mineralogy research on iron tailings from qidashan. Met Mine, 2014(1): 158

    李瑾, 倪文, 范敦城, 等. 齊大山鐵尾礦工藝礦物學研究. 金屬礦山, 2014(1):158
    [17] Liu W G, Wei D Z, Wang X H, et al. Application of Direct-reverse Flotation in Reconcentration of iron ore tailings from Reverse Flotation. Met Mine, 2011(1): 147

    劉文剛, 魏德洲, 王曉慧, 等. 反浮選鐵尾礦正—反浮選再選研究. 金屬礦山, 2011(1):147
    [18] Yu J W, Han Y X, Li Y J, et al. Pre-enrichment behaviors of low-grade donganshan iron ore using magnetic separation. J Northeast Univ Nat Sci, 2019, 40(1): 94 doi: 10.12068/j.issn.1005-3026.2019.01.018

    余建文, 韓躍新, 李艷軍, 等. 東鞍山貧鐵礦石磁選預富集行為. 東北大學學報(自然科學版), 2019, 40(1):94 doi: 10.12068/j.issn.1005-3026.2019.01.018
    [19] Cao S M, Cao Y J, Ma Z L, et al. The flotation separation of fine pyrite locked in coking coal. J China Univ Min Technol, 2019, 48(6): 1366

    曹世明, 曹亦俊, 馬子龍, 等. 焦煤中微細粒嵌布黃鐵礦的浮選脫除研究. 中國礦業大學學報, 2019, 48(6):1366
    [20] Li D, Yin W Z, Sun C B, et al. The self-carrier effect of hematite in the flotation. Chin J Eng, 2019, 41(11): 1397

    李東, 印萬忠, 孫春寶, 等. 赤鐵礦的自載體作用及對浮選的影響. 工程科學學報, 2019, 41(11):1397
    [21] Li L X, Yin W Z, Wang Y B, et al. Effect of siderite on flotation separation of martite and quartz. J Northeast Univ Nat Sci, 2012, 33(3): 431 doi: 10.12068/j.issn.1005-3026.2012.03.031

    李麗匣, 印萬忠, 王宇斌, 等. 菱鐵礦對假象赤鐵礦與石英混合礦浮選的影響. 東北大學學報(自然科學版), 2012, 33(3):431 doi: 10.12068/j.issn.1005-3026.2012.03.031
    [22] Hu W T, Wang H J, Liu X W, et al. Monomer dissociation characteristics and selective recovery technology of micro-fine iron particles. J Univ Sci Technol Beijing, 2013, 35(11): 1424

    胡文韜, 王化軍, 劉欣偉, 等. 微細鐵顆粒的單體解離特性和選擇性回收工藝. 北京科技大學學報, 2013, 35(11):1424
    [23] Li D P, Dai W, Zhao D Y, et al. Grinding process particle size modeling method using robust RVFLN-based ensemble learning. Chin J Eng, 2019, 41(1): 67

    李德鵬, 代偉, 趙大勇, 等. 一種基于魯棒隨機向量函數鏈接網絡的磨礦粒度集成建模方法. 工程科學學報, 2019, 41(1):67
    [24] Li D, Li Z Y, Yin W Z, et al. Effect of particle size on flotation separation of hematite and quartz. Chin J Eng, 2020, 42(5): 586

    李東, 李正要, 印萬忠, 等. 粒度大小對赤鐵礦和石英浮選分離的影響. 工程科學學報, 2020, 42(5):586
    [25] Li T, Wang S L, Xu F, et al. Study of the basic mechanical properties and degradation mechanism of recycled concrete with tailings before and after carbonation. J Clean Prod, 2020, 259: 120923 doi: 10.1016/j.jclepro.2020.120923
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  2033
  • HTML全文瀏覽量:  230
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-28
  • 網絡出版日期:  2021-09-13
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回