Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite
-
摘要: 以齊大山鐵礦選礦分廠鐵尾礦為例,對重選尾礦、磁選尾礦、浮選尾礦和綜合尾礦4種不同種類尾礦的工藝礦物學性質進行對比分析,并對尾礦中鐵的可回收性進行評價。研究結果表明,尾礦中鐵礦物主要為赤鐵礦,脈石礦物主要是石英,有害元素S、P的含量低;尾礦中鐵的金屬分布率隨著粒級的變化,呈兩端高、中間低的規律。重選尾礦中鐵礦物主要包裹在粗顆粒脈石中,浮選尾礦中鐵礦物主要賦存在細顆粒連生體中,磁選尾礦中的鐵礦物粒度極細,綜合尾礦粒度范圍寬、粒度分布極不均勻。采用單一重選和磁選方法對不同種類尾礦進行再選,浮選尾礦指標最佳,重選尾礦次之,綜合尾礦最差,磁選尾礦屬于不可選。鞍山式貧赤鐵礦分選尾礦中鐵的賦存狀態決定了鐵的再回收潛力,可為此類分選尾礦的處理提供理論借鑒。Abstract: Anshan-type low-grade hematite ore is one of the most important types of iron ore in China. It is usually separated by a combined process of gravity concentration-magnetic separation-reverse flotation. However, the tailings produced by different separation operations have different properties, and a large amount of the residual iron in the minerals cannot be recovered effectively; therefore, mixing these tailings is unscientific for most concentrators. Given this situation, this paper takes the iron tailings of the Qidashan iron ore dressing plant as an example to make a comparative analysis of the technological mineralogy of four types of tailings (i.e., gravity tailings, magnetic tailings, flotation tailings, and mixed tailings) and evaluate the recoverability of iron in these tailings. The results show that the main iron and gangue minerals are hematite and quartz, respectively. The content of harmful elements S and P is low in the tailings. In addition, the metal distribution rate of iron in the tailings varies with the size, showing a rule of high at both ends and low in the middle. It is also found that iron minerals are mainly wrapped in coarse gangue, and iron minerals in the flotation tailings are mainly contained in fine-grained conglomerates. Although the iron minerals in the magnetic separation tailings are extremely fine, mixed tailings have a wide range of particle sizes and extremely uneven distribution. Single gravity separation and magnetic separation methods are used to reconcentrate different types of tailings, and the best index is found to exist in flotation tailings, followed by gravity tailings, and that of mixed tailings is the worst. However, recovering iron from magnetic tailings is pointless. The mineralogical characteristics of Anshan-type hematite ore tailing underlies its recovery potential of iron and provides a reference for the retreatment of similar iron ore tailings.
-
Key words:
- Anshan-style iron ore /
- hematite /
- occurrence regularity /
- recyclability /
- metal distribution rate
-
圖 8 重選對不同種類尾礦中鐵的回收效果
Figure 8. Effect of gravity separation on iron recovery from different tailings
1—gravity tailings: shaker; 2—gravity tailings: screening-shaker; 3—magnetic tailings: shaker; 4—flotation tailings: shaker; 5—flotation tailings: classification-shaker; 6—flotation tailings: classification-screening-shaker; 7—mixed tailings: shaker; 8—mixed tailings: classification-shaker; 9—mixed tailings: classification-screening-shaker
圖 9 弱磁選對不同種類尾礦中鐵的回收效果
Figure 9. Effect of low-intensity magnetic separation on iron recovery from different tailings
1—gravity tailings: magnetic separation; 2—magnetic tailings: magnetic separation; 3—flotation tailings: magnetic separation; 4—flotation tailings: regrinding-magnetic separation; 5—mixed tailings: magnetic separation; 6—mixed tailings: regrinding-magnetic separation
表 1 不同種類尾礦的化學成分分析(質量分數)
Table 1. Chemical element analysis of the different tailings (mass fraction)
% Sample TFe SiO2 Al2O3 CaO MgO P MnO S Gravity tailings 10.46 84.27 0.34 0.37 0.69 0.017 0.10 0.023 Magnetic tailings 7.51 83.57 1.26 0.62 1.61 0.048 0.12 0.017 Flotation tailings 19.87 65.38 1.63 0.68 1.71 0.023 0.15 0.077 Mixed tailings 10.00 82.29 1.07 0.39 0.82 0.012 0.098 0.026 259luxu-164 -
參考文獻
[1] Ju H X, Hu W T, Liu X W, et al. Reengineering and selective recovery of iron-bearing silicate minerals. Chin J Eng, 2015, 37(10): 1268鞠會霞, 胡文韜, 劉欣偉, 等. 含鐵硅酸鹽礦物重構與選擇性回收. 工程科學學報, 2015, 37(10):1268 [2] Li H M, Zhang Z J, Li L X, et al. Types and general characteristics of the BIF-related iron deposits in China. Ore Geol Rev, 2014, 57: 264 doi: 10.1016/j.oregeorev.2013.09.014 [3] Zhang Z C, Hou T, Santosh M, et al. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol Rev, 2014, 57: 247 doi: 10.1016/j.oregeorev.2013.08.021 [4] Zhang D J, Agterberg F, Cheng Q M, et al. A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Math Geosci, 2014, 46(7): 869 doi: 10.1007/s11004-013-9496-8 [5] Li Z J, Qiao G G, Mi X Y, et al. Energy savings during magnetite ore preparation in eastern Hebei Province. J China Univ Min Technol, 2008, 37(5): 625 doi: 10.3321/j.issn:1000-1964.2008.05.009李占金, 喬國剛, 米雪玉, 等. 冀東磁鐵礦石粉碎過程節能降耗研究. 中國礦業大學學報, 2008, 37(5):625 doi: 10.3321/j.issn:1000-1964.2008.05.009 [6] Yin W Z, Ding Y Z. New Technology and Equipment for Iron Ore Dressing. Beijing: Metallurgical Industry Press, 2008印萬忠, 丁亞卓. 鐵礦選礦新技術與新設備. 北京: 冶金工業出版社, 2008 [7] Yin J N, Lindsay M, Teng S R. Mineral prospectivity analysis for BIF iron deposits: A case study in the Anshan-Benxi area, Liaoning Province, North-East China. Ore Geol Rev, 2020, 120: 102746 doi: 10.1016/j.oregeorev.2018.11.019 [8] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0 [9] Li L X, Zhu Y L, Yuan Z T, et al. Mechanism for higher iron grade of reverse flotation tailings of Anshan-type hematite ore. J Northeast Univ Nat Sci, 2013, 34(11): 1647 doi: 10.12068/j.issn.1005-3026.2013.11.030李麗匣, 朱玉蘭, 袁致濤, 等. 鞍山式赤鐵礦石反浮選尾礦鐵品位偏高機制. 東北大學學報(自然科學版), 2013, 34(11):1647 doi: 10.12068/j.issn.1005-3026.2013.11.030 [10] Gao P, Ji X, Ren D Z, et al. Iron recovery from flotation middling produced in carbonates-bearing hematite ore using coal-based reduction. J China Univ Min Technol, 2013, 42(5): 812高鵬, 紀新, 任多振, 等. 含碳酸鹽赤鐵礦石浮選中礦深度還原試驗研究. 中國礦業大學學報, 2013, 42(5):812 [11] Cui B Y, Wei D Z, Li T S, et al. Optimization of beneficiation technology on iron mine from qidashan. Met Mine, 2016(8): 75 doi: 10.3969/j.issn.1001-1250.2016.08.015崔寶玉, 魏德洲, 李天舒, 等. 齊大山鐵礦選礦工藝優化研究. 金屬礦山, 2016(8):75 doi: 10.3969/j.issn.1001-1250.2016.08.015 [12] Tang C, Li K Q, Ni W, et al. Recovering iron from iron ore tailings and preparing concrete composite admixtures. Minerals, 2019, 9(4): 232 doi: 10.3390/min9040232 [13] Wang Y M, Tian J Y, Wang H J, et al. Beneficiation Practice of Ferrous Metal Ore in China. Beijing: Science Press, 2008王運敏, 田嘉印, 王化軍, 等. 中國黑色金屬礦選礦實踐. 北京: 科學出版社, 2008 [14] Zhang R Y. Experimental Research on Recovery of Iron Contained in the Separation Tailings of Anshan-Type Iron Ore [Dissertation]. Shenyang: Northeastern University, 2011張瑞洋. 鞍山式鐵礦石分選尾礦中鐵的回收試驗研究[學位論文]. 沈陽: 東北大學, 2011 [15] Fan D C. Research on Pre-Concentration and Deep Reduction of Qidashan Iron Ore Tailings and the Comprehensive Utilization of Tailings [Dissertation]. Beijing: University of Science and Technology Beijing, 2018范敦城. 齊大山鐵尾礦預富集—深度還原提鐵及尾渣綜合利用研究[學位論文]. 北京: 北京科技大學, 2018 [16] Li J, Ni W, Fan D C, et al. Process mineralogy research on iron tailings from qidashan. Met Mine, 2014(1): 158李瑾, 倪文, 范敦城, 等. 齊大山鐵尾礦工藝礦物學研究. 金屬礦山, 2014(1):158 [17] Liu W G, Wei D Z, Wang X H, et al. Application of Direct-reverse Flotation in Reconcentration of iron ore tailings from Reverse Flotation. Met Mine, 2011(1): 147劉文剛, 魏德洲, 王曉慧, 等. 反浮選鐵尾礦正—反浮選再選研究. 金屬礦山, 2011(1):147 [18] Yu J W, Han Y X, Li Y J, et al. Pre-enrichment behaviors of low-grade donganshan iron ore using magnetic separation. J Northeast Univ Nat Sci, 2019, 40(1): 94 doi: 10.12068/j.issn.1005-3026.2019.01.018余建文, 韓躍新, 李艷軍, 等. 東鞍山貧鐵礦石磁選預富集行為. 東北大學學報(自然科學版), 2019, 40(1):94 doi: 10.12068/j.issn.1005-3026.2019.01.018 [19] Cao S M, Cao Y J, Ma Z L, et al. The flotation separation of fine pyrite locked in coking coal. J China Univ Min Technol, 2019, 48(6): 1366曹世明, 曹亦俊, 馬子龍, 等. 焦煤中微細粒嵌布黃鐵礦的浮選脫除研究. 中國礦業大學學報, 2019, 48(6):1366 [20] Li D, Yin W Z, Sun C B, et al. The self-carrier effect of hematite in the flotation. Chin J Eng, 2019, 41(11): 1397李東, 印萬忠, 孫春寶, 等. 赤鐵礦的自載體作用及對浮選的影響. 工程科學學報, 2019, 41(11):1397 [21] Li L X, Yin W Z, Wang Y B, et al. Effect of siderite on flotation separation of martite and quartz. J Northeast Univ Nat Sci, 2012, 33(3): 431 doi: 10.12068/j.issn.1005-3026.2012.03.031李麗匣, 印萬忠, 王宇斌, 等. 菱鐵礦對假象赤鐵礦與石英混合礦浮選的影響. 東北大學學報(自然科學版), 2012, 33(3):431 doi: 10.12068/j.issn.1005-3026.2012.03.031 [22] Hu W T, Wang H J, Liu X W, et al. Monomer dissociation characteristics and selective recovery technology of micro-fine iron particles. J Univ Sci Technol Beijing, 2013, 35(11): 1424胡文韜, 王化軍, 劉欣偉, 等. 微細鐵顆粒的單體解離特性和選擇性回收工藝. 北京科技大學學報, 2013, 35(11):1424 [23] Li D P, Dai W, Zhao D Y, et al. Grinding process particle size modeling method using robust RVFLN-based ensemble learning. Chin J Eng, 2019, 41(1): 67李德鵬, 代偉, 趙大勇, 等. 一種基于魯棒隨機向量函數鏈接網絡的磨礦粒度集成建模方法. 工程科學學報, 2019, 41(1):67 [24] Li D, Li Z Y, Yin W Z, et al. Effect of particle size on flotation separation of hematite and quartz. Chin J Eng, 2020, 42(5): 586李東, 李正要, 印萬忠, 等. 粒度大小對赤鐵礦和石英浮選分離的影響. 工程科學學報, 2020, 42(5):586 [25] Li T, Wang S L, Xu F, et al. Study of the basic mechanical properties and degradation mechanism of recycled concrete with tailings before and after carbonation. J Clean Prod, 2020, 259: 120923 doi: 10.1016/j.jclepro.2020.120923 -