<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

三元鋰離子動力電池熱失控及蔓延特性實驗研究

王淮斌 李陽 王欽正 杜志明 馮旭寧

王淮斌, 李陽, 王欽正, 杜志明, 馮旭寧. 三元鋰離子動力電池熱失控及蔓延特性實驗研究[J]. 工程科學學報, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002
引用本文: 王淮斌, 李陽, 王欽正, 杜志明, 馮旭寧. 三元鋰離子動力電池熱失控及蔓延特性實驗研究[J]. 工程科學學報, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002
WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002
Citation: WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002

三元鋰離子動力電池熱失控及蔓延特性實驗研究

doi: 10.13374/j.issn2095-9389.2020.10.27.002
基金項目: 科技部國際合作資助項目(2019YFE0100200);國家自然科學基金資助項目(51706117, 52076121);2019年度警察大學實驗創新平臺專項課題資助項目(2019sycxpd001)
詳細信息
    通訊作者:

    E-mail: fxn17@mail.tsinghua.edu.cn

  • 中圖分類號: X913.4; TM911.3

Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse

More Information
  • 摘要: 以電動汽車車用額定容量為42 A·h的三元方殼鋰離子電池單體和模組為研究對象,研究其在加熱條件下單體的絕熱熱失控特性及成組后側向加熱熱失控蔓延特性。結果表明,鋰離子電池在發生熱失控時,內部最高溫度可達920 ℃,電池表面和內部最大溫差達403 ℃;熱失控首先在迎向熱流的面觸發,隨后蔓延至整個電池;滿電狀態下的鋰離子電池內部熱失控蔓延時間介于8~12 s;熱失控蔓延過程中鋰離子電池的溫度特征與絕熱熱失控測試相比存在較大差異性;熱失控噴發顆粒物中,LiF及石墨質量分數占80%以上;模組中失控電池產生的總能量中用于自身加熱和噴發損失的占90%左右,熱失控釋放總能量的10%足以觸發熱失控蔓延。本文為研究三元鋰離子電池模組安全設計、熱失控蔓延抑制及新能源汽車的火災事故調查提供了參考。

     

  • 圖  1  內置熱電偶方案及其對電池性能的影響。(a)步驟;(b)開路電壓測量結果;(c)內阻測量結果

    Figure  1.  The built-in strategy of thermocouples and its influence on the performance of battery sample: (a) insertion steps; (b) open-circuit-voltage; (c) internal resistance

    圖  2  使用EV-ARC進行了鋰電池的絕熱熱失控測試

    Figure  2.  Experimental setup for the adiabatic thermal runaway tests of lithium-ion batteries using EV-ARC

    圖  3  熱失控蔓延實驗設計

    Figure  3.  Experimental setup for the thermal runaway propagation lithium-ion battery module

    圖  4  電池絕熱熱失控測試過程中的溫度、電壓特征圖

    Figure  4.  Voltage, temperature, and temperature rate of lithium-ion battery during the EV-ARC test

    圖  5  熱失控過程不同溫度階段內部反應

    Figure  5.  Chemical reactions inside the lithium-ion battery at different temperature ranges

    圖  6  電池熱失控過程的內部和表面溫度

    Figure  6.  Internal and surface temperatures of lithium-ion battery during thermal runaway in EV-ARC test

    圖  7  電池熱失控前后材料化學分析。(a)未失控正極掃描電鏡照片;(b)失控后正極殘骸掃描電鏡照片;(c)噴發顆粒物掃描電鏡照片;(d)未失控、失控后、噴發顆粒能譜結果;(e) 噴發顆粒物及失控后正極X射線衍射圖

    Figure  7.  Chemical analysis of the lithium-ion battery before and after thermal runaway: (a) SEM of cathode materials before thermal runaway; (b) SEM of residual cathode after thermal runaway; (c) SEM of vent particles; (d) EDS of element analysis on the cathode before and after thermal runaway; (e) XRD of vent particles and cathode materials after thermal runaway

    圖  8  ln(dT/dt)和T ?1擬合曲線

    Figure  8.  ln(dT/dt) versus T ?1 for lithium-ion battery

    圖  9  熱失控蔓延中電池的噴發特征。(1a)1#電池,0 s;(1b)1#電池,154 s;(1c)1#電池,161 s;(1d)1#電池,0 s;(1e)1#電池,154 s;(1f)1#電池,161 s;(2a)2#電池,212 s;(2b) 2#電池,218 s;(3a)3#電池,274 s;(3b)2#電池,280 s;(4a)4#電池,380 s;(4b)4#電池,393 s

    Figure  9.  Vent characteristics in thermal runaway propagation: (1a)1# Cell,0 s;(1b) 1# Cell,154 s;(1c) 1# Cell,161 s;(1d)1# Cell,0 s;(1e) 1# Cell,154 s;(1f) 1# Cell,161 s;(2a)2# Cell,212 s;(2b) 2# Cell,218 s;(3a)3# Cell,274 s;(3b) 2# Cell,280 s;(4a)4# Cell,380 s;(4b) 4# Cell,393 s

    圖  10  熱失控蔓延過程中溫度特征

    Figure  10.  Temperature characteristics in thermal runaway propagation

    圖  11  三元鋰電池的熱失控蔓延特性

    Figure  11.  Characteristics of thermal runaway propagation for Li(NiCOMn)1/3O2 battery

    圖  12  熱失控響應及質量損失

    Figure  12.  Thermal runaway response and mass loss in thermal runaway propagation

    圖  13  熱失控蔓延過程中溫度、電壓的響應

    Figure  13.  Temperature and voltage responses during thermal runaway propagation test

    圖  14  絕熱熱失控與側向加熱熱失控過程中電池內部溫升速率的對比

    Figure  14.  Comparison of the temperature rise rate between EV-ARC test and side heating during thermal runaway propagation

    圖  15  電池之間傳熱熱阻分布情況[35]

    Figure  15.  Distribution of thermal resistance between cells

    圖  16  熱失控蔓延至不同階段時相鄰電池內放的溫度分布情況[36]. (a)i#電池失控達到最高溫度; (b)i#電池加熱(i+1)#電池; (c)(i+1)#電池達到熱失控觸發溫度TTR-ARC; (d)(i+1)#電池失控達到最高溫度

    Figure  16.  Temperature distribution of adjacent batteries in different stages of thermal runaway propagation: (a) the maximum temperature of i# in TR; (b) i# heats (i+1) #; (c) the temperature of (i+1) #reachs to TTR-ARC; (d) the temperature of (i+1) #reachs to Tmax

    圖  17  熱失控蔓延過程中相鄰電池能流分布

    Figure  17.  Energy flow distribution of adjacent batteries during thermal runaway propagation

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] General Office of the State Council of the People’s Republic of China. Development Plan of New Energy Automobile Industry (2021—2035)[EB/OL]. www.gov.cn (2020-11-02)[2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm

    國務院辦公廳. 新能源汽車產業發展規劃(2021—2035年)[EB/OL]. 中國政府網 (2020-11-02) [2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
    [2] Mao B B, Huang P F, Chen H D, et al. Self-heating reaction and thermal runaway criticality of the lithiumion battery. Int J Heat Mass Transfer, 2020, 149: 119178 doi: 10.1016/j.ijheatmasstransfer.2019.119178
    [3] Wang S, Du Z M, Zhang Z L, et al. Research progress on safety of lithium-ion batteries. Chin J Eng, 2018, 40(8): 901

    王爽, 杜志明, 張澤林, 等. 鋰離子電池安全性研究進展. 工程科學學報, 2018, 40(8):901
    [4] Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4): 939 doi: 10.1016/j.jpowsour.2009.08.089
    [5] Sun Y X, Zhou Y, Shen Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery. Chemistry, 2017, 80(1): 34

    孫艷霞, 周園, 申月, 等. 動力型鋰離子電池富鋰三元正極材料研究進展. 化學通報, 2017, 80(1):34
    [6] Wang Y P, Hu S W, Cao F. Research prospect of cathode materials for lithium ion battery. Power Technol, 2017, 41(4): 638 doi: 10.3969/j.issn.1002-087X.2017.04.043

    王亞平, 胡淑婉, 曹峰. 鋰離子電池正極材料研究進展. 電源技術, 2017, 41(4):638 doi: 10.3969/j.issn.1002-087X.2017.04.043
    [7] Feng X N, Zheng S Q, Ren D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy, 2019, 246: 53 doi: 10.1016/j.apenergy.2019.04.009
    [8] Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246
    [9] Huang P F, Ping P, Li K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy, 2016, 183: 659 doi: 10.1016/j.apenergy.2016.08.160
    [10] B?rger A, Mertens J, Wenzl H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J Energy Storage, 2019, 24: 100649 doi: 10.1016/j.est.2019.01.012
    [11] Lopez C F, Jeevarajan J A, Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc, 2015, 162(9): A1905 doi: 10.1149/2.0921509jes
    [12] Gao S, Lu L G, Ouyang M G, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack. J Electrochem Soc, 2019, 166(10): A2065
    [13] Jiang Z Y, Qu Z G, Zhang J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl Energy, 2020, 268: 115007 doi: 10.1016/j.apenergy.2020.115007
    [14] Feng X N, Fang M, He X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources, 2014, 255: 294
    [15] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources, 2003, 113(1): 81 doi: 10.1016/S0378-7753(02)00488-3
    [16] Richard M N, Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc, 1999, 146(6): 2068 doi: 10.1149/1.1391893
    [17] Venugopal G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sources, 2001, 101(2): 231 doi: 10.1016/S0378-7753(01)00782-0
    [18] Wang H Y, Tang A D, Huang K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem, 2011, 29(8): 1583
    [19] Zhang Y J, Wang H W, Li W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation, 2019, 2: 100031 doi: 10.1016/j.etran.2019.100031
    [20] Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources, 2018, 373: 220 doi: 10.1016/j.jpowsour.2017.10.085
    [21] Peng Y, Yang L Z, Ju X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater, 2020, 381: 120916
    [22] Li H, Duan Q L, Zhao C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater, 2019, 375: 241 doi: 10.1016/j.jhazmat.2019.03.116
    [23] Wang H B, Du Z M, Rui X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater, 2020, 393: 122361 doi: 10.1016/j.jhazmat.2020.122361
    [24] Wilke S, Schweitzer B, Khateeb S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J Power Sources, 2017, 340: 51 doi: 10.1016/j.jpowsour.2016.11.018
    [25] Yuan C C, Wang Q S, Wang Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng, 2019, 153: 39 doi: 10.1016/j.applthermaleng.2019.02.127
    [26] Tao C F, Li G Y, Zhao J B, et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim, 2020, 142(4): 1523 doi: 10.1007/s10973-020-09274-x
    [27] Wang Z, Wang J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials. Energy, 2020, 204: 117946
    [28] Niu H C, Chen C X, Ji D, et al. Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol, 2020, 56(6): 2491 doi: 10.1007/s10694-020-00976-0
    [29] Wang H B, Du Z M, Liu L, et al. Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol, 2020, 56(6): 2427 doi: 10.1007/s10694-020-00963-5
    [30] Huang Z H, Zhao C P, Li H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy, 2020, 205: 117906 doi: 10.1016/j.energy.2020.117906
    [31] Feng X N. Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: test, Modeling and Prevention [Dissertation]. Beijing: Tsinghua University, 2016

    馮旭寧. 車用鋰離子動力電池熱失控誘發與擴展機理、建模與防控[學位論文]. 北京: 清華大學, 2016
    [32] Mao B B, Chen H D, Cui Z X, et al. Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transfer, 2018, 122: 1103 doi: 10.1016/j.ijheatmasstransfer.2018.02.036
    [33] Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743
    [34] Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 2019, 73: 95 doi: 10.1016/j.pecs.2019.03.002
    [35] Liu X, Ren D S, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047 doi: 10.1016/j.joule.2018.06.015
    [36] Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275: 261 doi: 10.1016/j.jpowsour.2014.11.017
  • 加載中
圖(17)
計量
  • 文章訪問數:  3773
  • HTML全文瀏覽量:  1494
  • PDF下載量:  291
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-27
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回