<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于剛性塊體模型的近?遠場崩落礦巖流動特性

孫浩 陳帥軍 高艷華 金愛兵 覃璇 巨有 尹澤松 李木芽 趙增山

孫浩, 陳帥軍, 高艷華, 金愛兵, 覃璇, 巨有, 尹澤松, 李木芽, 趙增山. 基于剛性塊體模型的近?遠場崩落礦巖流動特性[J]. 工程科學學報, 2021, 43(2): 205-214. doi: 10.13374/j.issn2095-9389.2020.10.23.003
引用本文: 孫浩, 陳帥軍, 高艷華, 金愛兵, 覃璇, 巨有, 尹澤松, 李木芽, 趙增山. 基于剛性塊體模型的近?遠場崩落礦巖流動特性[J]. 工程科學學報, 2021, 43(2): 205-214. doi: 10.13374/j.issn2095-9389.2020.10.23.003
SUN Hao, CHEN Shuai-jun, GAO Yan-hua, JIN Ai-bing, QIN Xuan, JU You, YIN Ze-song, LI Mu-ya, ZHAO Zeng-shan. Research on near/far-field flow characteristics of caved ore and rock based on rigid block model[J]. Chinese Journal of Engineering, 2021, 43(2): 205-214. doi: 10.13374/j.issn2095-9389.2020.10.23.003
Citation: SUN Hao, CHEN Shuai-jun, GAO Yan-hua, JIN Ai-bing, QIN Xuan, JU You, YIN Ze-song, LI Mu-ya, ZHAO Zeng-shan. Research on near/far-field flow characteristics of caved ore and rock based on rigid block model[J]. Chinese Journal of Engineering, 2021, 43(2): 205-214. doi: 10.13374/j.issn2095-9389.2020.10.23.003

基于剛性塊體模型的近?遠場崩落礦巖流動特性

doi: 10.13374/j.issn2095-9389.2020.10.23.003
基金項目: 國家自然科學基金資助項目(52004017,51674015);中國博士后科學基金資助項目(2020M670138);中央高校基本科研業務費專項資金資助項目(FRF-TP-19-026A1)
詳細信息
    通訊作者:

    E-mail:jinaibing@ustb.edu.cn

  • 中圖分類號: TD853

Research on near/far-field flow characteristics of caved ore and rock based on rigid block model

More Information
  • 摘要: 為進一步揭示遠場條件下金屬礦山崩落礦巖運移演化機理,綜合利用物理試驗、數值模擬和理論分析等手段,構建單口放礦模型開展近?遠場崩落礦巖流動特性研究。首次基于離散元軟件PFC3D和剛性塊體模型構建放礦數值模型,并通過近場放礦物理試驗與模擬結果的對比分析,證明了剛性塊體模型在崩落礦巖流動特性研究中的可靠性與優越性。在此基礎上,對遠場條件下松動體形態變化規律、礦巖流動體系內的應力演化規律及其力學機理進行了量化研究。研究結果表明:1)近?遠場條件下的松動體形態變化均符合倒置水滴理論。在放礦初始階段,松動體最大寬度隨高度增大呈冪函數形式快速增加;隨后,松動體最大寬度隨高度增大而近似線性增加。2)崩落礦巖流動過程中存在明顯的應力拱效應。隨著礦巖散體松動范圍不斷擴大,松動體外圍一定范圍內的垂直應力均呈明顯下降趨勢,水平應力逐漸增大并在松動區域到達前出現激增現象;而松動體內的水平應力與垂直應力則急劇下降至較低水平。

     

  • 圖  1  三維放礦物理與數值模型。(a)放礦物理試驗平臺;(b)放礦數值模型

    Figure  1.  3D physical and numerical draw models: (a) physical draw test platform; (b) numerical draw model

    圖  2  物理與數值試驗中的三維顆粒形狀。(a)物理試驗中存在的顆粒形狀;(b)過往數值模擬中選用的顆粒形狀;(c)本次數值模擬中選用的顆粒形狀

    Figure  2.  3D particle shapes used in physical and numerical draw tests: (a) particle shapes in the physical test; (b) particle shapes used in previous numerical simulations; (c) particle shapes used in these numerical simulations

    圖  3  物理與數值試驗中的顆粒級配曲線

    Figure  3.  Particle size distribution curves in physical and numerical draw tests

    圖  4  篩分后所得不同粒徑的石灰石散體。(a)3~8 mm;(b)8~16 mm;(c)16~25 mm;(d)25~45 mm

    Figure  4.  Limestone particles with different sizes after sieving: (a) 3?8 mm; (b) 8?16 mm; (c) 16?25 mm; (d) 25?45 mm

    圖  5  標志顆粒布設圖

    Figure  5.  Layout of labeled markers

    圖  6  放礦物理與數值試驗中的放出體與松動體形態縱剖面圖。(a)物理試驗中的放出體;(b)數值模擬中高度50 m的放出體;(c)數值模擬中高度50 m的松動體

    Figure  6.  Longitudinal profiles of the IEZ’s and IMZ’s shapes in physical and numerical draw tests: (a) IEZ in the physical test; (b) IEZ with a height of 50 m in numerical simulation; (c) IMZ with a height of 50 m in numerical simulation

    圖  7  放出體、松動體高度與最大半徑關系的近場放礦物理與數值試驗結果對比

    Figure  7.  Comparison of relationship between the height and maximal radius of IEZ/IMZ in near-field physical and numerical draw tests

    圖  8  遠場放礦數值模型縱剖面圖和應力測量域布設

    Figure  8.  Longitudinal profile of the far-field numerical draw model and layout of stress measurement regions

    圖  9  松動體高度與最大半徑關系的遠場放礦數值模擬數據和理論曲線對比

    Figure  9.  Comparison between the data of far-field numerical draw test and theoretic curve for the relationship between the height and maximal radius of IMZ

    圖  10  第1、4、5、6、7號測量域內的垂直應力變化過程

    Figure  10.  Variations of vertical stresses within measurement regions Nos. 1, 4, 5, 6, and 7

    圖  11  第1、4、7號測量域內的水平應力變化過程

    Figure  11.  Variations of horizontal stresses within measurement regions Nos. 4, 5, and 6

    圖  12  第4、5、6號測量域內側壓系數倒數的變化過程

    Figure  12.  Variations of reciprocal of the lateral pressure within measurement regions Nos. 4, 5, and 6

    圖  13  礦巖顆粒流動體系內應力拱和應力轉移示意圖

    Figure  13.  Schematic of stress arch and stress transfer within the particle flow system of caved ore and rock

    表  1  墻體及剛性塊體細觀力學參數

    Table  1.   Meso-mechanical parameters of walls and rigid blocks

    WallsRigid blocks
    Normal stiffness/
    (N·m?1)
    Shear stiffness/
    (N·m?1)
    Friction
    coefficient
    Normal stiffness/
    (N·m?1)
    Shear stiffness/
    (N·m?1)
    Density/
    (kg·m?3)
    Friction
    coefficient
    5×1075×1070.503×1073×10726200.50
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Shen N S, Gu X C, Yin S H. Technology status of block caving method at home and abroad. Min Technol, 2009, 9(4): 1 doi: 10.3969/j.issn.1671-2900.2009.04.001

    沈南山, 顧曉春, 尹升華. 國內外自然崩落采礦法技術現狀. 采礦技術, 2009, 9(4):1 doi: 10.3969/j.issn.1671-2900.2009.04.001
    [2] Chitombo G P. Cave mining: 16 years after Laubscher’s 1994 paper 'Cave mining?state of the art'. Min Technol, 2010, 119(3): 132 doi: 10.1179/174328610X12820409992255
    [3] Pierce M E. A Model for Gravity Flow of Fragmented Rock in Block Caving Mines[Dissertation]. Brisbane: The University of Queensland, 2010
    [4] Wang H C. Ore Drawing. Beijing: Metallurgical Industry Press, 1982

    王漢昌. 放礦學. 北京: 冶金工業出版社, 1982
    [5] Li R F, Guo J P. Quasi-ellipsoid Drawing Theory and Verification of Drawing. Beijing: Metallurgical Industry Press, 2016

    李榮福, 郭進平. 類橢球體放礦理論及放礦理論檢驗. 北京: 冶金工業出版社, 2016
    [6] Ren F Y. Stochastic Medium Theory for Ore Drawing and Its Application. Beijing: Metallurgical Industry Press, 1994

    任鳳玉. 隨機介質放礦理論及其應用. 北京: 冶金工業出版社, 1994
    [7] Fr?str?m J. Examination of Equivalent Model Materials for Development and Design of Sublevel Caving[Dissertation]. Stockholm: Royal Institute of Technology, 1970
    [8] Jin A B, Sun H, Wu S C, et al. Confirmation of the upside-down drop shape theory in gravity flow and development of a new empirical equation to calculate the shape. Int J Rock Mech Min Sci, 2017, 92: 91 doi: 10.1016/j.ijrmms.2016.12.005
    [9] ?ssr R K. Gravity flow of granular materials in hoppers and bins. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(1): 25 doi: 10.1016/0148-9062(65)90020-3
    [10] ?ssr R K. Gravity flow of granular materials in hoppers and bins in mines—Ⅱ. Coarse material. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(3): 277 doi: 10.1016/0148-9062(65)90029-X
    [11] Janelid I, Kvapli R. Sublevel caving. Int J Rock Mech Min Sci Geomech Abs, 1966, 3(2): 129 doi: 10.1016/0148-9062(66)90004-0
    [12] Laubscher D H. Block Cave Manual, Design Topic: Drawpoint Spacing and Draw Control[Dissertation]. Brisbane: The University of Queensland, 2000
    [13] Power G R. Modelling Granular Flow in Caving Mines: Large Scale Physical Modelling and Full Scale Experiments [Dissertation]. Brisbane: The University of Queensland, 2004
    [14] Castro R, Trueman R, Halim A. A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int J Rock Mech Min Sci, 2007, 44(6): 860 doi: 10.1016/j.ijrmms.2007.01.001
    [15] Tao G Q, Yang S J, Feng Y F. Experimental research on granular flow characters of caved ore and rock. Rock Soil Mech, 2009, 30(10): 2950 doi: 10.3969/j.issn.1000-7598.2009.10.010

    陶干強, 楊仕教, 任鳳玉. 崩落礦巖散粒體流動性能試驗研究. 巖土力學, 2009, 30(10):2950 doi: 10.3969/j.issn.1000-7598.2009.10.010
    [16] Wang H J, Ying S H, Wu A X, et al. Experimental study of the factors affecting the ore flow mechanism during block caving. J China Univ Min Technol, 2010, 39(5): 693

    王洪江, 尹升華, 吳愛祥, 等. 崩落礦巖流動特性及影響因素實驗研究. 中國礦業大學學報, 2010, 39(5):693
    [17] Wang Y P, Yu J. Optimization of breaking interval in non-pillar sublevel caving mining. J Cent South Univ Sci Technol, 2014, 45(2): 603

    王云鵬, 余健. 無底柱分段崩落法崩礦步距的優化. 中南大學學報(自然科學版), 2014, 45(2):603
    [18] Sao A L. Experimental research on mullock movement in the side drawing. Min Metall Eng, 2012, 32(3): 1 doi: 10.3969/j.issn.0253-6099.2012.03.001

    邵安林. 端部放礦廢石移動規律試驗研究. 礦冶工程, 2012, 32(3):1 doi: 10.3969/j.issn.0253-6099.2012.03.001
    [19] Xu S, An L, Li Y H, et al. Optimization of caving space for different angles of end-wall during pillarless sublevel caving. J Northeast Univ Nat Sci, 2012, 33(1): 120

    徐帥, 安龍, 李元輝, 等. 無底柱分段崩落法多端壁傾角下崩礦步距優化. 東北大學學報(自然科學版), 2012, 33(1):120
    [20] Castro R, Pineda M. The role of gravity flow in the design and planning of large sublevel stopes. J South Afr Inst Min Metall, 2015, 115(2): 113 doi: 10.17159/2411-9717/2015/v115n2a4
    [21] Sun H, Jin A B, Gao Y T, et al. Experimental research on the expectation body theory and optimization of the rate of advance during ore breaking in side drawing. Chin J Eng, 2016, 38(9): 1197

    孫浩, 金愛兵, 高永濤, 等. 期望體理論的實驗研究及端部放礦崩礦步距優化. 工程科學學報, 2016, 38(9):1197
    [22] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47 doi: 10.1680/geot.1979.29.1.47
    [23] Zhu H C. PFC and application case of caving study. Chin J Rock Mech Eng, 2006, 25(9): 1927 doi: 10.3321/j.issn:1000-6915.2006.09.030

    朱煥春. PFC及其在礦山崩落開采研究中的應用. 巖石力學與工程學報, 2006, 25(9):1927 doi: 10.3321/j.issn:1000-6915.2006.09.030
    [24] Hashim M H M. Particle Percolation in Block Caving Mines[Dissertation]. Sydney: The University of New South Wales, 2011
    [25] Song Z Y, Wei W J, Zhang J W. Numerical investigation of effect of particle shape on isolated extracted zone (IEZ) in block caving. Arab J Geosci, 2018, 11(12): 310 doi: 10.1007/s12517-018-3669-1
    [26] Hu J H, Guo F Z, Luo X W, et al. Simulation of ore flow behavior and optimization of discharge parameters for caving method in gently inclined medium thickness ore-body. J Cent South Univ Sci Technol, 2015, 46(5): 1772 doi: 10.11817/j.issn.1672-7207.2015.05.027

    胡建華, 郭福鐘, 羅先偉, 等. 緩傾斜中厚礦體崩落開采礦石流動規律仿真與放礦參數優化. 中南大學學報(自然科學版), 2015, 46(5):1772 doi: 10.11817/j.issn.1672-7207.2015.05.027
    [27] Sun H, Jin A B, Gao Y T, et al. Influencing factors on the flow characteristics of an isolated extraction zone in caving mining. Chin J Eng, 2015, 37(9): 1111

    孫浩, 金愛兵, 高永濤, 等. 崩落法采礦中放出體流動特性的影響因素. 工程科學學報, 2015, 37(9):1111
    [28] Sun H, Jin A B, Gao Y T, et al. Flow characteristics of caved ore and rock under complex boundary conditions. J Cent South Univ Sci Technol, 2015, 46(10): 3782 doi: 10.11817/j.issn.1672-7207.2015.10.031

    孫浩, 金愛兵, 高永濤, 等. 復雜邊界條件下崩落礦巖流動特性. 中南大學學報(自然科學版), 2015, 46(10):3782 doi: 10.11817/j.issn.1672-7207.2015.10.031
    [29] Sun H, Jin A B, Gao Y T, et al. Research of the isolated extraction zone form and determination of optimal independent advance under different end wall angles. Chin J Eng, 2016, 38(2): 159

    孫浩, 金愛兵, 高永濤, 等. 不同端壁傾角條件下放出體形態研究及最優崩礦步距的確定. 工程科學學報, 2016, 38(2):159
    [30] Castro R, Gómez R, Pineda M, et al. Experimental quantification of vertical stresses during gravity flow in block caving. Int J Rock Mech Min Sci, 2020, 127: 104237 doi: 10.1016/j.ijrmms.2020.104237
    [31] Rafiee R, Ataei M, Khalookakaie R, et al. Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. Int J Rock Mech Min Sci, 2018, 105: 22 doi: 10.1016/j.ijrmms.2018.03.001
    [32] Itasca Consulting Group Inc. PFC 6.0 documentation[EB/OL]. Itasca Consulting Group Inc (2019)[2020-07-11]. http://docs.itascacg.com/pfc600/pfc/docproject/index.html
    [33] Sun H, Jin A B, Elmo D, et al. A numerical based approach to calculate ore dilution rates using rolling resistance model and upside-down drop shape theory. Rock Mech Rock Eng, 2020, 53(10): 4639 doi: 10.1007/s00603-020-02180-6
    [34] Sun H. Study on Migration and Evolution Mechanism of Caved Ore and Rock Based on the Particle Flow Theory[Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    孫浩. 基于顆粒元理論的崩落礦巖運移演化機理研究[學位論文]. 北京: 北京科技大學, 2019
    [35] Castro R L. Study of the Mechanisms of Gravity Flow for Block Caving[Dissertation]. Brisbane: University of Queensland, 2007
    [36] Arévalo R, Maza D, Pugnaloni L A. Identification of arches in two-dimensional granular packings. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(2): 021303 doi: 10.1103/PhysRevE.74.021303
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  2116
  • HTML全文瀏覽量:  756
  • PDF下載量:  50
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-23
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回