<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

SiC半導體不同晶面氧化機理及動力學的研究進展

趙春陽 王恩會 侯新梅

趙春陽, 王恩會, 侯新梅. SiC半導體不同晶面氧化機理及動力學的研究進展[J]. 工程科學學報, 2021, 43(5): 594-602. doi: 10.13374/j.issn2095-9389.2020.10.10.001
引用本文: 趙春陽, 王恩會, 侯新梅. SiC半導體不同晶面氧化機理及動力學的研究進展[J]. 工程科學學報, 2021, 43(5): 594-602. doi: 10.13374/j.issn2095-9389.2020.10.10.001
ZHAO Chun-yang, WANG En-hui, HOU Xin-mei. Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces[J]. Chinese Journal of Engineering, 2021, 43(5): 594-602. doi: 10.13374/j.issn2095-9389.2020.10.10.001
Citation: ZHAO Chun-yang, WANG En-hui, HOU Xin-mei. Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces[J]. Chinese Journal of Engineering, 2021, 43(5): 594-602. doi: 10.13374/j.issn2095-9389.2020.10.10.001

SiC半導體不同晶面氧化機理及動力學的研究進展

doi: 10.13374/j.issn2095-9389.2020.10.10.001
基金項目: 國家自然科學基金資助項目(51904021,51974021);中央高校基本科研業務費資助項目(FRF-TP-19-004B2Z)
詳細信息
    通訊作者:

    E-mail: houxinmei01@126.com

  • 中圖分類號: TN305.5

Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces

More Information
  • 摘要: SiC作為一種綜合性能優異寬禁帶半導體,在金屬氧化物半導體場效應晶體管中具有廣泛的應用。然而SiC熱氧化生成SiO2的過程具有各向異性,導致不同晶面上的氧化速率差異較大,這會對半導體器件的性能產生不利影響,因而研究SiC各個晶面上SiO2的生長規律尤其重要。建立有效合理的動力學模型是認識上述規律的有效手段。本文從反應機理和擬合準確度兩方面對目前具有代表性的改進的Deal-Grove模型(Song模型和Massoud經驗關系式)以及硅碳排放模型(Si?C emission model)進行系統研究和比較。在此基礎上,分析已有模型的優缺點,提出本課題組建立的真實物理動力學模型應用的可能性,為SiC不同晶面氧化動力學的準確描述提供進一步優化和修正思路。

     

  • 圖  1  SiC的C面和Si面O結合表面的側面圖(紅色原子表示O原子,橙色原子表示Si原子,綠色原子表示C原子)[18]。(a~d)C面隨著氧氣含量遞增的氧化過程;(e~h)Si面隨著氧氣含量遞增的氧化過程

    Figure  1.  Side views of typical configurations of O-incorporated surfaces on the C-face and Si-face of SiC (Orange, green, and gray circles denote Si, C, and H atoms, respectively) [18]: (a?d) the oxidation process of the C-face with increasing oxygen content; (e?h) the oxidation process of the Si-face with increasing oxygen content

    圖  2  Deal-Grove定義的線性?拋物線時間規律的動力學過程[20]

    Figure  2.  Dynamics process of the linear?parabolic time law defined by Deal-Grove[20]

    圖  3  考慮氣體產物外擴散的SiC氧化示意圖[11]

    Figure  3.  Schematic of SiC oxidation considering external diffusion of gas products[11]

    圖  4  Song模型計算結果(實線)和4H-SiC氧化實驗結果[11](散點)對比圖。(a)Si面氧化物的厚度與時間和溫度的函數關系;(b)C面氧化物的厚度與時間和溫度的函數關系

    Figure  4.  Comparison of calculation results of the Song model (solid curves) and experimental results of 4H-SiC oxidation[11] (scatters): (a) oxide thickness as a function of time and temperature for dry thermal oxidation of the Si-face of 4H-SiC; (b) oxide thickness as a function of time and temperature for dry thermal oxidation of the C-face of 4H-SiC

    圖  5  不同晶面Si–C鍵氧化過程演變示意圖(橙色箭頭表示Si背鍵)[13]。(a)Si面;(b)a面;(c)C面

    Figure  5.  Schematics of Si–C bonds on the SiC surface (the orange arrow denotes a Si back-bond)[13]: (a) Si-face; (b) a-face; (c) C-face

    圖  6  Massoud經驗關系式計算結果(實線)和4H-SiC氧化實驗數據[13](散點)對比圖。(a)不同溫度下Si面氧化層的厚度與氧化層生長速率的函數關系;(b)不同溫度下C面氧化層的厚度與氧化層生長速率的函數關系

    Figure  6.  Comparison of calculation results of the Massoud empirical relation (solid curves) and experimental results of 4H-SiC oxidation[13] (scatters): (a) oxide thickness dependence of the oxide growth rate at various temperatures on the Si-face of SiC; (b) oxide thickness dependence of the oxide growth rate at various temperatures on the C-face of SiC

    圖  7  硅碳排放模型示意圖[15]

    Figure  7.  Schematic illustration of the Si–C emission model [15]

    圖  8  硅碳排放模型的計算結果(實線)和4H-SiC氧化實驗數據[25](散點)對比圖。(a)不同溫度下Si面氧化層的厚度與氧化層生長速率的函數關系;(b)不同溫度下C面氧化層的厚度與氧化層生長速率的函數關系

    Figure  8.  Comparison of calculation results of the “Si and C emission model” (solid curves) and experimental results of 4H-SiC oxidation[25] (scatters): (a) oxide thickness dependence of the oxide growth rate at various temperatures on the Si-face of SiC; (b) oxide thickness dependence of the oxide growth rate at various temperatures on the C-face of SiC

    圖  9  Gupta[26]研究中4H-SiC的Si面氧化數據(散點)與三個模型的計算結果(實線)對比圖。(a)Song模型;(b)Massoud經驗關系式;(c)硅碳排放模型

    Figure  9.  Comparison of the Si surface oxidation data of 4H-SiC in the Gupta[26] study (scatter point) and the calculation results of the three models (solid curves): (a) Song model; (b) Massoud empirical relation model; (c) silicon carbon emission model

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chung G Y, Tin C C, Williams J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett, 2001, 22(4): 176 doi: 10.1109/55.915604
    [2] Simonka V, H?ssinger A, Weinbub J, et al. Growth rates of dry thermal oxidation of 4H-silicon carbide. J Appl Phys, 2016, 120(13): 135705 doi: 10.1063/1.4964688
    [3] Madjour K. Silicon carbide market update: From discrete devices to modules [R/OL]. In PCIM Europe (2014-05-21) [2020-03-07]. https://apps.richardsonrfpd.com/Mktg/Tech-Hub/pdfs/YOLEPCIM_2014_SiC_Market_ARROW_KMA_Yole-final.pdf.
    [4] Ma H C, Zhou X M, Gao D W. High-power DC-DC converter based on SiC power device. Chin J Eng, 2017, 39(8): 1224

    馬后成, 周曉敏, 高大威. 基于SiC功率器件的大功率DC—DC變換器. 工程科學學報, 2017, 39(8):1224
    [5] Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond-based MOSFETs. Int J Miner Metall Mater, 2019, 26(10): 1195 doi: 10.1007/s12613-019-1843-4
    [6] Vickridge I, Ganem J, Hoshino Y, et al. Growth of SiO2 on SiC by dry thermal oxidation: mechanisms. J Phys D Appl Phys, 2007, 40(20): 6254 doi: 10.1088/0022-3727/40/20/S10
    [7] Yano H, Katafuchi F, Kimoto T, et al. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET’s. IEEE Trans Electron Devices, 1999, 46(3): 504 doi: 10.1109/16.748869
    [8] Kamimura K, Kobayashi D, Okada S, et al. Preparation and characterization of SiO2/6H-SiC metal–insulator–semiconductor structure using TEOS as source material. Appl Surf Sci, 2001, 184(1-4): 346 doi: 10.1016/S0169-4332(01)00515-3
    [9] Lai P T, Xu J P, Wu H P, et al. Interfacial properties and reliability of SiO2 grown on 6H-SiC in dry O2 plus trichloroethylene. Microelectron Reliab, 2004, 44(4): 577 doi: 10.1016/j.microrel.2004.01.009
    [10] Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36(12): 3770 doi: 10.1063/1.1713945
    [11] Song Y, Dhar S, Feldman L C, et al. Modified deal grove model for the thermal oxidation of silicon carbide. J Appl Phys, 2004, 95(9): 4953 doi: 10.1063/1.1690097
    [12] Massoud H Z, Plummer J D, Irene E A. Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime I. Experimental results. J Electrochem Soc, 1985, 132(11): 2685 doi: 10.1149/1.2113648
    [13] Goto D, Hijikata Y, Yagi S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry. J Appl Phys, 2015, 117(9): 095306 doi: 10.1063/1.4914050
    [14] Kageshima H, Shiraishi K, Uematsu M. Universal theory of Si oxidation rate and importance of interfacial Si emission. Jpn J Appl Phys, 1999, 38(9A): L971
    [15] Hijikata Y, Yaguchi H, Yoshida S. A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon. Appl Phys Express, 2009, 2(2): 021203
    [16] Schürmann M, Dreiner S, Berges U, et al. Structure of the interface between ultrathin SiO2 films and 4H-SiC (0001). Phys Rev B, 2006, 74(3): 035309 doi: 10.1103/PhysRevB.74.035309
    [17] Fiorenza P, Raineri V. Reliability of thermally oxidized SiO2/4H-SiC by conductive atomic force microscopy. Appl Phys Lett, 2006, 88(21): 212112 doi: 10.1063/1.2207991
    [18] Ito A, Akiyama T, Nakamura K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: Effect of crystalline surface orientations. Jpn J Appl Phys, 2015, 54(10): 101301 doi: 10.7567/JJAP.54.101301
    [19] Matsushita Y, Oshiyama A. Mechanisms of initial oxidation of 4H-SiC (0111) and $ (000\bar{1}) $ surfaces unraveled by first-principles calculations [J/OL]. ArXiv Preprint (2016-12-01)[2020-08-15]. https://arxiv.org/abs/1612.00189.
    [20] Presser V, Nickel K G. Silica on silicon carbide. Crit Rev Solid State Mater Sci, 2008, 33(1): 1 doi: 10.1080/10408430701718914
    [21] Yamamoto T, Hijikata Y, Yaguchi H, et al. Oxide growth rate enhancement of silicon carbide (0001) Si-faces in thin oxide regime. Jpn J Appl Phys, 2008, 47(10R): 7803
    [22] Yamamoto T, Hijikata Y, Yaguchi H, et al. Growth rate enhancement of (0001)-face silicon–carbide oxidation in thin oxide regime. Jpn J Appl Phys, 2007, 46(8L): L770
    [23] Hosoi T, Nagai D, Sometani M, et al. Ultrahigh-temperature rapid thermal oxidation of 4H-SiC (0001) surfaces and oxidation temperature dependence of SiO2/SiC interface properties. Appl Phys Lett, 2016, 109(18): 182114 doi: 10.1063/1.4967002
    [24] Jia Y F, Lv H L, Song Q W, et al. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors. Appl Surf Sci, 2017, 397: 175 doi: 10.1016/j.apsusc.2016.11.142
    [25] Goto D, Hijikata Y. Unified theory of silicon carbide oxidation based on the Si and C emission model. J Phys D Appl Phys, 2016, 49(22): 225103 doi: 10.1088/0022-3727/49/22/225103
    [26] Gupta S K, Akhtar J. Thermal oxidation of silicon carbide (SiC)–experimentally observed facts // Mukherjee M. Silicon Carbide—Materials, Processing and Applications in Electronic Devices. Rijeka: InTech, 2011: 207
    [27] Hou X M, Zhou G Z. Oxidation behavior of SiAlON materials. J Univ Sci Technol Beijing, 2007, 29(11): 1114 doi: 10.3321/j.issn:1001-053x.2007.11.011

    侯新梅, 周國治. SiAlON材料的氧化行為. 北京科技大學學報, 2007, 29(11):1114 doi: 10.3321/j.issn:1001-053x.2007.11.011
    [28] Hou X M, Yu Z Y, Chen Z Y, et al. Reaction kinetics of BN powder under high temperature water vapor. J Univ Sci Technol Beijing, 2013, 35(10): 1346

    侯新梅, 虞自由, 陳志遠, 等. 高溫含水條件下BN粉體的反應動力學. 北京科技大學學報, 2013, 35(10):1346
    [29] Wang E H, Chen J H, Hu X J, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature. J Am Ceram Soc, 2016, 99(8): 2699 doi: 10.1111/jace.14274
    [30] Wang E H, Cheng J, Ma J W, et al. Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air. Metall Mater Trans A, 2018, 49(10): 5169 doi: 10.1007/s11661-018-4781-2
  • 加載中
圖(9)
計量
  • 文章訪問數:  1272
  • HTML全文瀏覽量:  724
  • PDF下載量:  107
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-10
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回