Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces
-
摘要: SiC作為一種綜合性能優異寬禁帶半導體,在金屬氧化物半導體場效應晶體管中具有廣泛的應用。然而SiC熱氧化生成SiO2的過程具有各向異性,導致不同晶面上的氧化速率差異較大,這會對半導體器件的性能產生不利影響,因而研究SiC各個晶面上SiO2的生長規律尤其重要。建立有效合理的動力學模型是認識上述規律的有效手段。本文從反應機理和擬合準確度兩方面對目前具有代表性的改進的Deal-Grove模型(Song模型和Massoud經驗關系式)以及硅碳排放模型(Si?C emission model)進行系統研究和比較。在此基礎上,分析已有模型的優缺點,提出本課題組建立的真實物理動力學模型應用的可能性,為SiC不同晶面氧化動力學的準確描述提供進一步優化和修正思路。
-
關鍵詞:
- SiC /
- 金屬氧化物半導體場效應晶體管 /
- Deal-Grove模型 /
- 晶面 /
- 氧化
Abstract: In recent years, efficient electrical equipment for reducing energy consumption has drawn increasing worldwide attention. Although silicon (Si) has been used as a power semiconductor device, its improving effect on the performance of power semiconductor devices is greatly limited by its physical characteristics. Compared with Si, silicon carbide (SiC) as a type of wideband gap semiconductor has more excellent comprehensive physical properties in power device applications, including a triple wideband gap, a triple high thermal conductivity, and a tenfold breakdown electric field. Moreover, SiC can form silicon dioxide (SiO2) on the surface through thermal oxidation, which plays an important role in device manufacturing technology as an insulating layer. Based on these properties, SiC has gradually replaced Si as the preferred material of power devices used in metal oxide field-effect transistors (MOSFETs). The structure of a MOSFET contains a polysilicon-oxide layer (mostly SiO2)-SiC or diamond as the core. This structure is exactly equivalent to that of a capacitor, with SiO2 as the dielectric medium in the middle, and the capacitance value is determined by the thickness and dielectric coefficient of SiO2. However, the anisotropic process during the thermal oxidation from SiC to SiO2 results in a large difference in oxidation rate on different crystal faces, which adversely affects the performance of semiconductor devices. Therefore, studying the growth law of SiO2 on each crystal surface of SiC is of vital importance. Effective and reasonable dynamic models are expected to clarify the behavior. In this paper, the representative modified Deal-Grove model (Song model and Massoud empirical relation) and Si?C emission model were researched and compared systematically in terms of the reaction mechanism and fitting accuracy. On this basis, the advantages and disadvantages of the models were analyzed, and the possibility of the application of the real physical picture model established by our research group was proposed, which can further contribute to optimization and modification for the precise description of the oxidation kinetics of SiC on different crystal faces.-
Key words:
- SiC /
- MOSFET /
- Deal-Grove model /
- crystal face /
- oxidation
-
圖 1 SiC的C面和Si面O結合表面的側面圖(紅色原子表示O原子,橙色原子表示Si原子,綠色原子表示C原子)[18]。(a~d)C面隨著氧氣含量遞增的氧化過程;(e~h)Si面隨著氧氣含量遞增的氧化過程
Figure 1. Side views of typical configurations of O-incorporated surfaces on the C-face and Si-face of SiC (Orange, green, and gray circles denote Si, C, and H atoms, respectively) [18]: (a?d) the oxidation process of the C-face with increasing oxygen content; (e?h) the oxidation process of the Si-face with increasing oxygen content
圖 4 Song模型計算結果(實線)和4H-SiC氧化實驗結果[11](散點)對比圖。(a)Si面氧化物的厚度與時間和溫度的函數關系;(b)C面氧化物的厚度與時間和溫度的函數關系
Figure 4. Comparison of calculation results of the Song model (solid curves) and experimental results of 4H-SiC oxidation[11] (scatters): (a) oxide thickness as a function of time and temperature for dry thermal oxidation of the Si-face of 4H-SiC; (b) oxide thickness as a function of time and temperature for dry thermal oxidation of the C-face of 4H-SiC
圖 6 Massoud經驗關系式計算結果(實線)和4H-SiC氧化實驗數據[13](散點)對比圖。(a)不同溫度下Si面氧化層的厚度與氧化層生長速率的函數關系;(b)不同溫度下C面氧化層的厚度與氧化層生長速率的函數關系
Figure 6. Comparison of calculation results of the Massoud empirical relation (solid curves) and experimental results of 4H-SiC oxidation[13] (scatters): (a) oxide thickness dependence of the oxide growth rate at various temperatures on the Si-face of SiC; (b) oxide thickness dependence of the oxide growth rate at various temperatures on the C-face of SiC
圖 8 硅碳排放模型的計算結果(實線)和4H-SiC氧化實驗數據[25](散點)對比圖。(a)不同溫度下Si面氧化層的厚度與氧化層生長速率的函數關系;(b)不同溫度下C面氧化層的厚度與氧化層生長速率的函數關系
Figure 8. Comparison of calculation results of the “Si and C emission model” (solid curves) and experimental results of 4H-SiC oxidation[25] (scatters): (a) oxide thickness dependence of the oxide growth rate at various temperatures on the Si-face of SiC; (b) oxide thickness dependence of the oxide growth rate at various temperatures on the C-face of SiC
圖 9 Gupta[26]研究中4H-SiC的Si面氧化數據(散點)與三個模型的計算結果(實線)對比圖。(a)Song模型;(b)Massoud經驗關系式;(c)硅碳排放模型
Figure 9. Comparison of the Si surface oxidation data of 4H-SiC in the Gupta[26] study (scatter point) and the calculation results of the three models (solid curves): (a) Song model; (b) Massoud empirical relation model; (c) silicon carbon emission model
259luxu-164 -
參考文獻
[1] Chung G Y, Tin C C, Williams J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett, 2001, 22(4): 176 doi: 10.1109/55.915604 [2] Simonka V, H?ssinger A, Weinbub J, et al. Growth rates of dry thermal oxidation of 4H-silicon carbide. J Appl Phys, 2016, 120(13): 135705 doi: 10.1063/1.4964688 [3] Madjour K. Silicon carbide market update: From discrete devices to modules [R/OL]. In PCIM Europe (2014-05-21) [2020-03-07]. https://apps.richardsonrfpd.com/Mktg/Tech-Hub/pdfs/YOLEPCIM_2014_SiC_Market_ARROW_KMA_Yole-final.pdf. [4] Ma H C, Zhou X M, Gao D W. High-power DC-DC converter based on SiC power device. Chin J Eng, 2017, 39(8): 1224馬后成, 周曉敏, 高大威. 基于SiC功率器件的大功率DC—DC變換器. 工程科學學報, 2017, 39(8):1224 [5] Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond-based MOSFETs. Int J Miner Metall Mater, 2019, 26(10): 1195 doi: 10.1007/s12613-019-1843-4 [6] Vickridge I, Ganem J, Hoshino Y, et al. Growth of SiO2 on SiC by dry thermal oxidation: mechanisms. J Phys D Appl Phys, 2007, 40(20): 6254 doi: 10.1088/0022-3727/40/20/S10 [7] Yano H, Katafuchi F, Kimoto T, et al. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET’s. IEEE Trans Electron Devices, 1999, 46(3): 504 doi: 10.1109/16.748869 [8] Kamimura K, Kobayashi D, Okada S, et al. Preparation and characterization of SiO2/6H-SiC metal–insulator–semiconductor structure using TEOS as source material. Appl Surf Sci, 2001, 184(1-4): 346 doi: 10.1016/S0169-4332(01)00515-3 [9] Lai P T, Xu J P, Wu H P, et al. Interfacial properties and reliability of SiO2 grown on 6H-SiC in dry O2 plus trichloroethylene. Microelectron Reliab, 2004, 44(4): 577 doi: 10.1016/j.microrel.2004.01.009 [10] Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36(12): 3770 doi: 10.1063/1.1713945 [11] Song Y, Dhar S, Feldman L C, et al. Modified deal grove model for the thermal oxidation of silicon carbide. J Appl Phys, 2004, 95(9): 4953 doi: 10.1063/1.1690097 [12] Massoud H Z, Plummer J D, Irene E A. Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime I. Experimental results. J Electrochem Soc, 1985, 132(11): 2685 doi: 10.1149/1.2113648 [13] Goto D, Hijikata Y, Yagi S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry. J Appl Phys, 2015, 117(9): 095306 doi: 10.1063/1.4914050 [14] Kageshima H, Shiraishi K, Uematsu M. Universal theory of Si oxidation rate and importance of interfacial Si emission. Jpn J Appl Phys, 1999, 38(9A): L971 [15] Hijikata Y, Yaguchi H, Yoshida S. A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon. Appl Phys Express, 2009, 2(2): 021203 [16] Schürmann M, Dreiner S, Berges U, et al. Structure of the interface between ultrathin SiO2 films and 4H-SiC (0001). Phys Rev B, 2006, 74(3): 035309 doi: 10.1103/PhysRevB.74.035309 [17] Fiorenza P, Raineri V. Reliability of thermally oxidized SiO2/4H-SiC by conductive atomic force microscopy. Appl Phys Lett, 2006, 88(21): 212112 doi: 10.1063/1.2207991 [18] Ito A, Akiyama T, Nakamura K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: Effect of crystalline surface orientations. Jpn J Appl Phys, 2015, 54(10): 101301 doi: 10.7567/JJAP.54.101301 [19] Matsushita Y, Oshiyama A. Mechanisms of initial oxidation of 4H-SiC (0111) and $ (000\bar{1}) $ surfaces unraveled by first-principles calculations [J/OL]. ArXiv Preprint (2016-12-01)[2020-08-15]. https://arxiv.org/abs/1612.00189. [20] Presser V, Nickel K G. Silica on silicon carbide. Crit Rev Solid State Mater Sci, 2008, 33(1): 1 doi: 10.1080/10408430701718914 [21] Yamamoto T, Hijikata Y, Yaguchi H, et al. Oxide growth rate enhancement of silicon carbide (0001) Si-faces in thin oxide regime. Jpn J Appl Phys, 2008, 47(10R): 7803 [22] Yamamoto T, Hijikata Y, Yaguchi H, et al. Growth rate enhancement of (0001)-face silicon–carbide oxidation in thin oxide regime. Jpn J Appl Phys, 2007, 46(8L): L770 [23] Hosoi T, Nagai D, Sometani M, et al. Ultrahigh-temperature rapid thermal oxidation of 4H-SiC (0001) surfaces and oxidation temperature dependence of SiO2/SiC interface properties. Appl Phys Lett, 2016, 109(18): 182114 doi: 10.1063/1.4967002 [24] Jia Y F, Lv H L, Song Q W, et al. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors. Appl Surf Sci, 2017, 397: 175 doi: 10.1016/j.apsusc.2016.11.142 [25] Goto D, Hijikata Y. Unified theory of silicon carbide oxidation based on the Si and C emission model. J Phys D Appl Phys, 2016, 49(22): 225103 doi: 10.1088/0022-3727/49/22/225103 [26] Gupta S K, Akhtar J. Thermal oxidation of silicon carbide (SiC)–experimentally observed facts // Mukherjee M. Silicon Carbide—Materials, Processing and Applications in Electronic Devices. Rijeka: InTech, 2011: 207 [27] Hou X M, Zhou G Z. Oxidation behavior of SiAlON materials. J Univ Sci Technol Beijing, 2007, 29(11): 1114 doi: 10.3321/j.issn:1001-053x.2007.11.011侯新梅, 周國治. SiAlON材料的氧化行為. 北京科技大學學報, 2007, 29(11):1114 doi: 10.3321/j.issn:1001-053x.2007.11.011 [28] Hou X M, Yu Z Y, Chen Z Y, et al. Reaction kinetics of BN powder under high temperature water vapor. J Univ Sci Technol Beijing, 2013, 35(10): 1346侯新梅, 虞自由, 陳志遠, 等. 高溫含水條件下BN粉體的反應動力學. 北京科技大學學報, 2013, 35(10):1346 [29] Wang E H, Chen J H, Hu X J, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature. J Am Ceram Soc, 2016, 99(8): 2699 doi: 10.1111/jace.14274 [30] Wang E H, Cheng J, Ma J W, et al. Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air. Metall Mater Trans A, 2018, 49(10): 5169 doi: 10.1007/s11661-018-4781-2 -