<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高疲勞壽命軸承鋼潔凈度現狀及研究進展

顧超 王仲亮 肖微 王敏 劉宇 黃永生 包燕平

顧超, 王仲亮, 肖微, 王敏, 劉宇, 黃永生, 包燕平. 高疲勞壽命軸承鋼潔凈度現狀及研究進展[J]. 工程科學學報, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
引用本文: 顧超, 王仲亮, 肖微, 王敏, 劉宇, 黃永生, 包燕平. 高疲勞壽命軸承鋼潔凈度現狀及研究進展[J]. 工程科學學報, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
GU Chao, WANG Zhong-liang, XIAO Wei, WANG Min, LIU Yu, HUANG Yong-sheng, BAO Yan-ping. Research status and progress on cleanliness of high-fatigue-life bearing steels[J]. Chinese Journal of Engineering, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005
Citation: GU Chao, WANG Zhong-liang, XIAO Wei, WANG Min, LIU Yu, HUANG Yong-sheng, BAO Yan-ping. Research status and progress on cleanliness of high-fatigue-life bearing steels[J]. Chinese Journal of Engineering, 2021, 43(3): 299-310. doi: 10.13374/j.issn2095-9389.2020.10.09.005

高疲勞壽命軸承鋼潔凈度現狀及研究進展

doi: 10.13374/j.issn2095-9389.2020.10.09.005
基金項目: 中央高校基本科研業務費資助項目(FRF-TP-20-026A1);中國博士后科學基金資助項目(2020M680348);鋼鐵冶金新技術國家重點實驗室自主課題資助項目(41620004)
詳細信息
    通訊作者:

    E-mail:baoyp@ustb.edu.cn

  • 中圖分類號: TF762

Research status and progress on cleanliness of high-fatigue-life bearing steels

More Information
  • 摘要: 對比了國內外高疲勞壽命軸承鋼主要雜質元素、主要夾雜物特征等冶金性能的差異,并對比了不同冶金質量下,軸承鋼的疲勞性能及誘發疲勞斷裂的因素,總結了國產軸承鋼潔凈度現狀及與國外優質軸承鋼的差距。在此基礎上,圍繞高疲勞壽命軸承鋼,以進一步提高國產軸承鋼質量為目的,分析梳理了國產軸承鋼冶煉技術及夾雜物控制方法的發展軌跡,探討了國產軸承鋼進一步提高疲勞壽命及質量的發展方向。

     

  • 圖  1  軸承使用性能主要影響因素

    Figure  1.  Main influence factor on the service character of bearings

    圖  2  不同種類夾雜物在軸承鋼中最大裂尖應力強度因子(SIF)對比

    Figure  2.  Comparison of maximum stress intensity factors (SIF) of different inclusions in bearing steels

    圖  3  國內外軸承鋼主要雜質元素對比。(a)Ca;(b)Ti;(c)T.O;(d)N

    Figure  3.  Composition of main impurity elements in domestic and foreign bearing steels: (a) Ca; (b) Ti; (c) T.O; (d) N

    圖  4  國內外軸承鋼主要夾雜物對比。(a)尖晶石類夾雜物個數密度;(b)鈣鋁酸鹽類夾雜物個數密度;(c)硅酸鹽類夾雜物個數密度;(d)尖晶石類夾雜物尺寸分布;(e)鈣鋁酸鹽類夾雜物尺寸分布;(f)硅酸鹽類夾雜物尺寸分布;(g)氮化鈦類夾雜物個數密度;(h)硫化錳類夾雜物個數密度;(i)氮化鈦類夾雜物尺寸分布;(j)硫化錳類夾雜物尺寸分布

    Figure  4.  Composition of main inclusion in domestic and foreign bearing steels: (a) number density of spinel inclusion; (b) size distribution of spinel inclusion; (c) number density of calcium aluminate inclusion; (d) size distribution of calcium aluminate inclusion; (e) number density of silicate inclusion; (f) size distribution of silicate inclusion; (g) number density of titanium nitride inclusion; (h) size distribution of titanium nitride inclusion; (i) number density of manganese sulfide inclusion; (j) size distribution of manganese sulfide inclusion

    圖  5  國內外軸承鋼典型疲勞特征。(a)疲勞壽命對比[3];(b)鈣鋁酸鹽類夾雜物致疲勞斷口形貌(軸承鋼B)[3];(c)尖晶石類類夾雜物致疲勞斷口形貌(軸承鋼C)[12];(d)氮化鈦類類夾雜物致疲勞斷口形貌(軸承鋼D)[12]

    Figure  5.  Typical fatigue characterization of domestic and foreign bearing steels: (a) comparison of fatigue life[3]; (b) morphology of fatigue fracture induced by calcium aluminate inclusion (bearing steel B)[3]; (c) morphology of fatigue fracture induced by spinel inclusion (bearing steel C)[12]; (d) morphology of fatigue fracture induced by titanium nitride inclusion (bearing steel D)[12]

    圖  6  國內鋼材冶煉脫氧技術發展

    Figure  6.  Development of deoxidation methods of domestic steels

    圖  7  水口結瘤物形貌及成分[27]。(a)內層結瘤物;(b)中間層結瘤物;(c)中間層結瘤物成分

    Figure  7.  Morphologies and composition of nuzzle clogging[27]: (a) inner clogging; (b) intermediate-layer clogging; (c) composition of intermediate-layer clogging

    圖  8  鋁脫氧鋼中夾雜物的變形路徑

    Figure  8.  Deformation path of inclusions in Al deoxidation steel

    圖  9  非鋁脫氧鋼(S)和鋁脫氧鋼(A)中夾雜物對比[46].(a)尺寸;(b)密度

    Figure  9.  Comparison of inclusions in non-Al deoxidation steel (S) and Al deoxidation steel (L): (a) size; (b) number density

    表  1  GB/T 18254—2016高碳鉻軸承鋼中殘余元素含量要求(質量分數)

    Table  1.   Requirements of residual elements in high carbon chromium bearing steel in GB/T 18254—2016 %

    Metallurgical qualityNiCuPSCaOaTibAlAsAs+Sn+SbPb
    High-quality steel≤0.25≤0.25≤0.025≤0.020≤0.0012≤0.0050≤0.050≤0.04≤0.075≤0.002
    Advanced high-quality steel≤0.25≤0.25≤0.020≤0.020≤0.0010≤0.0009≤0.0030≤0.050≤0.04≤0.075≤0.002
    Super high-quality steel≤0.25≤0.25≤0.015≤0.015≤0.0010≤0.0006≤0.0015≤0.050≤0.04≤0.075≤0.002
    Note: a The oxygen content is tested in billets or rolled steels; b The composition in steel grade GCr15SiMn, GCr15SiMo, and GCr18Mo is allowed 0.0005% addition.
    下載: 導出CSV

    表  2  Al?O平衡常數計算值和實驗值對比

    Table  2.   Comparison of calculation results and experimental data of Al?O equilibrium constant

    Thermodynamic calculationExperiments without oxygenExperiments with oxygen
    Researchers-lg Kd Researchers-lg Kd Researchers-lg Kd
    Chipman14Chipman14Hessenbruch9
    Kubaschewski15Gller13Herty9
    Richardson13Kuznetchov12Wentrup10
    Sawamura14Eutrement13Hilty9
    Elliott14Fruehan14Repetylo9
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad. J Iron Steel Res, 2016, 28(3): 1

    李昭昆, 雷建中, 徐海峰, 等. 國內外軸承鋼的現狀與發展趨勢. 鋼鐵研究學報, 2016, 28(3):1
    [2] Ren X. Current situation and development direction of special steel in China. World Metal Guide, 2016-10-18: B14

    任秀平: 我國特殊鋼現狀及發展方向. 世界金屬導報, 2016-10-18: B14
    [3] Gu C, Bao Y P, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime. Int J Miner Metall Mater, 2018, 25(6): 623 doi: 10.1007/s12613-018-1609-4
    [4] Qian G A, Hong Y S, Zhou C G. Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens. Eng Fail Anal, 2010, 17(7-8): 1517 doi: 10.1016/j.engfailanal.2010.06.002
    [5] Gao G H, Zhang B X, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning tempering process. Int J Fatigue, 2016, 92: 203 doi: 10.1016/j.ijfatigue.2016.06.025
    [6] Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels-Effects of Nonmetallic Inclusions. Beijing: Metallurgical Industry Press, 2010

    李守新, 翁宇慶, 惠衛軍, 等. 高強度鋼超高周疲勞性能: 非金屬夾雜物的影響. 北京: 冶金工業出版社, 2010
    [7] Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int J Fatigue, 2014, 64: 114 doi: 10.1016/j.ijfatigue.2014.03.003
    [8] Karr U, Schuller R, Fitzka M, et al. Influence of inclusion type on the very high cycle fatigue properties of 18Ni maraging steel. J Mater Sci, 2017, 52(10): 5954 doi: 10.1007/s10853-017-0831-1
    [9] Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel. Metals, 2019, 9(4): 476 doi: 10.3390/met9040476
    [10] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of nonmetallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture and the size and location of non-metallic inclusions. Int J Fatigue, 1989, 11(5): 291
    [11] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 18254—2016 High Carbon Chromium Bearing Steel. Beijing: Standard Press of China, 2016

    中華人民共和國國家質量監督檢驗檢疫總局, 中國國家標準化管理委員會. GB/T 18254—2016 高碳鉻軸承鋼. 北京: 中國標準出版社, 2016
    [12] Gu C. Microstructure Fatigue Life Prediction Model Based on the Effect of Inclusions in Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    顧超. 高品質軸承鋼疲勞壽命預測模型及夾雜物影響規律研究[學位論文]. 北京: 北京科技大學, 2019
    [13] Xu L M, Wang C S, Wang D H. Deoxidation of steel making and application of complex ferroalloy. Ferro-Alloys, 2004, 35(5): 12 doi: 10.3969/j.issn.1001-1943.2004.05.003

    徐鹿鳴, 王春生, 王德華. 煉鋼的脫氧和復合合金的應用. 鐵合金, 2004, 35(5):12 doi: 10.3969/j.issn.1001-1943.2004.05.003
    [14] Shirokov N I, Petukhov B G. Deoxidation of rail steel by a reduced quantity of aluminum. Metallurgist, 1958, 2(1): 22 doi: 10.1007/BF00734438
    [15] Yu Z S. Noduling and blockage at nozzle of continuous casting tundish and ladle. Angang Technol, 1980(5): 8

    余宗森. 連鑄中間包及盛鋼桶水口結瘤堵塞問題. 鞍鋼技術, 1980(5):8
    [16] Ofengenden A M, Nesterovich R P. Reducing the amount of aluminum for the deoxidation of steel. Metallurgist, 1958, 2(6): 286 doi: 10.1007/BF00736270
    [17] Lu S Y. Elimination of nozzle clogging by substitution Si for Al as deoxidant. Steelmaking, 2004, 20(6): 32 doi: 10.3969/j.issn.1002-1043.2004.06.011

    盧盛意. 用硅代替鋁脫氧來消除連鑄水口堵塞. 煉鋼, 2004, 20(6):32 doi: 10.3969/j.issn.1002-1043.2004.06.011
    [18] Cai X F, Bao Y P, Lin L, et al. Effect of Al content on the evolution of non-metallic inclusions in Si–Mn deoxidized steel. Steel Res Int, 2016, 87(9): 1168 doi: 10.1002/srin.201500305
    [19] Lyu S, Ma X D, Huang Z Z, et al. Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel. Metall Mater Trans B, 2019, 50(4): 1862 doi: 10.1007/s11663-019-01613-0
    [20] Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567

    李璟宇, 成國光, 李六一, 等. 202不銹鋼中非金屬夾雜物的形成機理. 工程科學學報, 2019, 41(12):1567
    [21] Li Y, Chen C Y, Qin G Q, et al. Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn. Int J Miner Metall Mater, 2020, 27(8): 1083 doi: 10.1007/s12613-019-1957-8
    [22] Xu J C, Palmer A R. Studies on morphology and compositions of oxide inclusions formed in liquid steel after deoxidation with aluminum. J Lanzhou Univ Technol, 1987, 13(1): 55

    徐金城, A. R. 帕莫. 鋁脫氧鋼液中氧化物夾雜的形態和成分. 甘肅工業大學學報, 1987, 13(1):55
    [23] Shi Z Y, Wang S L. Analysis of aluminum deoxidation and silicon-aluminum-iron deoxidation. Steelmaking, 1991(1): 22

    史宗耀, 王樹林. 鋁脫氧和硅鋁鐵脫氧分析. 煉鋼, 1991(1):22
    [24] Zhang W L. "A Blank" in aluminum deoxidization for steel. Sci Technol Baotou Steel, 1980(1): 58

    張文祿. 鋼用鋁脫氧的“一段空白”. 包鋼科技, 1980(1):58
    [25] Li H L, Zhang Z P, Wang F H. Brief talk on aluminum deoxidation and nitrogen determination function in liquid steel. Tianjin Metall, 2008(05): 51 doi: 10.3969/j.issn.1006-110X.2008.05.013

    李會玲, 張哲平, 汪鳳華. Al在鋼中脫氧定氮作用淺析. 天津冶金, 2008(05):51 doi: 10.3969/j.issn.1006-110X.2008.05.013
    [26] Zhang F X. Effect of aluminum on performance of non-alloy soft steel. Res Iron Steel, 1974(4): 44

    張復祥. 鋁對非合金軟鋼性能的影響. 鋼鐵研究情報, 1974(4):44
    [27] Cui H, Bao Y P, Wang M, et al. Clogging behavior of submerged entry nozzles for Ti-bearing IF steel. Int J Miner Metall Mater, 2010, 17(2): 154 doi: 10.1007/s12613-010-0206-y
    [28] Hua C J, Wang M, Zhang M Y, et al., Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.05.05.001

    華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.05.05.001
    [29] Wang X H, Wang L F. Control of the non-metallic inclusions in hard wire steels. Steel Wire Products, 2005, 31(5): 9

    王新華, 王立峰. 硬線鋼中非金屬夾雜物控制. 金屬制品, 2005, 31(5):9
    [30] Gladman T. Developments in inclusions control and their effects on steel properties. Ironmaking Steelmaking, 1992, 19(6): 457
    [31] Zhu L H, Zhao Q X, Gu H C, et al. A new understanding of deoxidation by aluminum in steels. J Iron Steel Res, 1999, 11(4): 65 doi: 10.3321/j.issn:1001-0963.1999.04.016

    朱麗慧, 趙欽新, 顧海澄, 等. 關于鋼用鋁脫氧的再認識. 鋼鐵研究學報, 1999, 11(4):65 doi: 10.3321/j.issn:1001-0963.1999.04.016
    [32] Gu C, Lian J H, Bao Y P, et al. Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions. Mater Sci Eng A, 2019, 751: 133 doi: 10.1016/j.msea.2019.02.058
    [33] Gu C, Lian J H, Bao Y P, et al. Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes. Int J Fatigue, 2019, 129: 105158 doi: 10.1016/j.ijfatigue.2019.06.018
    [34] Bao S, Chen B, Jiang M, et al. Experimental research of simultaneous reducing [Al]s and [O] of ultra low oxygen steel. Iron Steel, 2007, 42(6): 30 doi: 10.3321/j.issn:0449-749X.2007.06.007

    包薩日娜, 陳斌, 姜敏, 等. 超低氧鋼中同時降低[Al]s、[O]實驗研究. 鋼鐵, 2007, 42(6):30 doi: 10.3321/j.issn:0449-749X.2007.06.007
    [35] Li H B, Lin W, Wang X H, et al. Formation and transformation of spinel inclusion in aluminium killed steel. Special Steel, 2007, 28(4): 30 doi: 10.3969/j.issn.1003-8620.2007.04.011

    李海波, 林偉, 王新華, 等. 鋁脫氧鋼中尖晶石夾雜物的生成與轉變. 特殊鋼, 2007, 28(4):30 doi: 10.3969/j.issn.1003-8620.2007.04.011
    [36] Hu W H, Bao Y P, Jin Y H. Study and control practice of Als in GCr15 bearing steel strip. Steelmaking, 2009, 25(2): 22

    胡文豪, 包燕平, 金耀輝. GCr15板帶軸承鋼中的Als研究與實踐. 煉鋼, 2009, 25(2):22
    [37] Wang X H. Technologies of deoxidation, refining and non-metallic inclusion control for special steels // Proceedings of 2010 National Steelmaking Continuous Casting Technology Conference. Qian’an, 2010

    王新華. 超低氧含量特殊鋼的脫氧、精煉與非金屬夾雜物控制 // 2010年全國煉鋼—連鑄生產技術會議. 遷安, 2010
    [38] Zhao D W, Li H B, Gao P, et al. Inclusion formation and deformation in Al-killed wheel steel without calcium treatment. Iron Steel, 2016, 51(1): 25

    趙東偉, 李海波, 高攀, 等. 非鈣處理鋁脫氧車輪鋼夾雜物形成及變形行為. 鋼鐵, 2016, 51(1):25
    [39] Chen B, Bao S, Jiang M, et al. Cleanliness of molten steel improved by Mg. J Iron Steel Res, 2008, 20(6): 14

    陳斌, 包薩日娜, 姜敏, 等. 鎂提高鋼水純凈度的研究. 鋼鐵研究學報, 2008, 20(6):14
    [40] Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013, 53(3): 450 doi: 10.2355/isijinternational.53.450
    [41] Deng Z Y, Zhu M Y. Deoxidation mechanism of Al-killed steel during industrial refining process. ISIJ Int, 2014, 54(7): 1498
    [42] Zhai X L, He Z M, Liu Y H, et al. Thermodynamic analysis on the non-metallic inclusion formation in deoxidation of austenitic Mn-steels with Ca-Al. Iron Steel, 1986(6): 42

    翟學來, 何鎮明, 劉耀輝, 等. 鈣鋁脫氧對奧氏體錳鋼非金屬夾雜物形成的熱力學分析. 鋼鐵, 1986(6):42
    [43] Qiao M R, Guo S Q, Zheng H Y, et al. Study on the modification of inclusions by Mg treatment in GCr18Mo bearing steel. Shanghai Met, 2019, 41(2): 86 doi: 10.3969/j.issn.1001-7208.2019.02.016

    喬夢然, 郭曙強, 鄭紅妍, 等. GCr18Mo軸承鋼的鎂處理改質效果研究. 上海金屬, 2019, 41(2):86 doi: 10.3969/j.issn.1001-7208.2019.02.016
    [44] Yang C Y, Liu P, Luan L K, et al. Study on transverse-longitudinal fatigue properties and their effective inclusion-size mechanism of hot rolled bearing steel with rare earth addition. Int J Fatigue, 2019, 128: 105193 doi: 10.1016/j.ijfatigue.2019.105193
    [45] Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763

    常立忠, 高崗, 鄭福舟, 等. 稀土?鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763
    [46] Gu C, Bao Y P, Gan P, et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels. Steel Res Int, 2018, 89(9): 1800129 doi: 10.1002/srin.201800129
    [47] Ladutkin D, Korte E, Bleymehl M, et al. Advantages of Si deoxidation of bearing steels for steel cleanness and for composition and morphology of nonmetallic inclusions in rolled product // Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, 2017: 48
    [48] Shimamoto M, Sugimura T, Kimura S, et al. Improvement of the rolling contact fatigue resistance in bearing steels by adjusting the composition of oxide inclusions // Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings. West Conshohocken, 2015: 173
    [49] Owaki A, Shimamoto M, Sugimura T, et al. The study of the evaluation of the fracture initiation and propagation on the rolling contact fatigue in bearing steels // Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, 2017: 487
    [50] Xue Z L, Li Z B, Zhang J W. Deoxidization and oxide inclusion control of steel. Special Steel, 2001, 22(6): 24 doi: 10.3969/j.issn.1003-8620.2001.06.008

    薛正良, 李正邦, 張家雯. 鋼的脫氧與氧化物夾雜控制. 特殊鋼, 2001, 22(6):24 doi: 10.3969/j.issn.1003-8620.2001.06.008
    [51] Wu W, Liu L, Li J. Deoxidization process with low aluminum addition for heavy rail steel. Iron Steel, 2007, 42(3): 33 doi: 10.3321/j.issn:0449-749X.2007.03.009

    吳偉, 劉瀏, 李峻. 重軌鋼無鋁脫氧工藝的研究. 鋼鐵, 2007, 42(3):33 doi: 10.3321/j.issn:0449-749X.2007.03.009
    [52] Li Y, Jiang Z H, Yuan W X, et al. Effect of refining slag on inclusions in non-aluminum deoxidation steel. China Metall, 2006, 16(6): 28 doi: 10.3969/j.issn.1006-9356.2006.06.008

    李陽, 姜周華, 袁偉霞, 等. 精煉渣對非鋁脫氧鋼中夾雜物影響的實驗研究. 中國冶金, 2006, 16(6):28 doi: 10.3969/j.issn.1006-9356.2006.06.008
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  3984
  • HTML全文瀏覽量:  855
  • PDF下載量:  271
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-09
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回