<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同打印角度SLM–Ti6Al4V組織結構及其在含氟離子溶液中的腐蝕行為

王堯 閻笑盈 滿成 張宏偉 董超芳 王昕

王堯, 閻笑盈, 滿成, 張宏偉, 董超芳, 王昕. 不同打印角度SLM–Ti6Al4V組織結構及其在含氟離子溶液中的腐蝕行為[J]. 工程科學學報, 2021, 43(5): 676-683. doi: 10.13374/j.issn2095-9389.2020.09.29.001
引用本文: 王堯, 閻笑盈, 滿成, 張宏偉, 董超芳, 王昕. 不同打印角度SLM–Ti6Al4V組織結構及其在含氟離子溶液中的腐蝕行為[J]. 工程科學學報, 2021, 43(5): 676-683. doi: 10.13374/j.issn2095-9389.2020.09.29.001
WANG Yao, YAN Xiao-ying, MAN Cheng, ZHANG Hong-wei, DONG Chao-fang, WANG Xin. Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F?-containing solutions[J]. Chinese Journal of Engineering, 2021, 43(5): 676-683. doi: 10.13374/j.issn2095-9389.2020.09.29.001
Citation: WANG Yao, YAN Xiao-ying, MAN Cheng, ZHANG Hong-wei, DONG Chao-fang, WANG Xin. Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F?-containing solutions[J]. Chinese Journal of Engineering, 2021, 43(5): 676-683. doi: 10.13374/j.issn2095-9389.2020.09.29.001

不同打印角度SLM–Ti6Al4V組織結構及其在含氟離子溶液中的腐蝕行為

doi: 10.13374/j.issn2095-9389.2020.09.29.001
基金項目: 國家自然科學基金資助項目(51901216);中國博士后科學基金資助項目(2019M652471,2020T130620)
詳細信息
    通訊作者:

    E-mail:mancheng@ouc.edu.cn

  • 中圖分類號: TG172.6

Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F?-containing solutions

More Information
  • 摘要: 采用金相顯微鏡、掃描電子顯微鏡、電化學實驗和浸泡實驗研究了打印角度30°、45°和60°的SLM-Ti6Al4V試樣的組織結構及其在NaF溶液中的腐蝕行為。結果表明,三種試樣的組織結構都是原β晶粒內部交叉分布針狀α'相;打印角度45°試樣中針狀α'相尺寸與微觀結構晶格畸變程度最小。電化學測試結構表明,三種試樣在NaF溶液中的腐蝕行為特征都是隨溶液濃度增加,由自發鈍化逐漸轉變為活性溶解,其臨界氟離子濃度分別處于0.0005~0.00075、0.00075~0.001和0.0005~0.00075 mol·L?1。浸泡試驗結果表明,當NaF濃度低于臨界氟離子濃度的時候,試樣表面基本保持完整,而高于臨界值的時候試樣表面發生活性溶解。此外,對比三種試樣的耐腐蝕性能可以發現,打印角度為45°試樣的耐腐蝕性能優于其他試樣的性能。

     

  • 圖  1  打印角度30°、45°和60°的SLM–Ti6Al4V試樣示意圖

    Figure  1.  Schematic of SLM–Ti6Al4V with fabrication angles of 30°, 45°, and 60°

    圖  2  不同打印角度SLM–Ti6Al4V 試樣的金相和掃描電鏡結果。(a)金相,30°;(b)金相,45°;(c)金相,60°;(d)掃描電鏡,30°;(e)掃描電鏡,45°;(f)掃描電鏡,60°

    Figure  2.  Metalloscopy, SEM results of SLM–Ti6Al4V samples: (a) metalloscopy, 30°; (b) metalloscopy, 45°; (c) metalloscopy, 60°; (d) SEM, 30°; (e) SEM, 45°; (f) SEM, 60°

    圖  3  打印角度30°、45°和60°的SLM–Ti6Al4V試樣的X射線衍射圖

    Figure  3.  XRD patterns of SLM–Ti6Al4V with different fabrication angles

    圖  4  不同打印角度SLM–Ti6Al4V 試樣的OCP結果。(a)30°;(b)45°;(c)60°;(d)OCP隨NaF濃度的變化

    Figure  4.  OCP results of SLM–Ti6Al4V with different fabrication angles: (a) 30°; (b) 45°; (c) 60°; (d) distribution of OCP with NaF concentrations

    圖  5  不同打印角度SLM–Ti6Al4V 試樣的極化曲線結果。(a)30°;(b)45°;(c)60°;(d)鈍化電流密度隨NaF濃度的變化

    Figure  5.  OCP results of SLM–Ti6Al4V with different fabrication angles: (a) 30°; (b) 45°; (c) 60°; (d) distribution of passive current density with NaF concentrations

    圖  6  不同打印角度的SLM–Ti6Al4V 試樣的電化學交流阻抗圖((a)30°,(b)45°,(c)60°),極化電阻圖(d),以及等效電路圖(e, f)

    Figure  6.  EIS results of SLM–Ti6Al4V with different fabrication angles ((a) 30°, (b) 45°, and (c) 60°); polarization resistance (d); and the equivalent electrical circuits (e, f)

    圖  7  不同打印角度SLM–Ti6Al4V試樣在不同NaF濃度溶液中浸泡72 h后的腐蝕形貌

    Figure  7.  Morphologies of SLM–Ti6Al4V with different fabrication angles after immersed in different concentrations of NaF for 72 h

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys. Laser Optoelectron Prog, 2018, 55(1): 21

    李俊峰, 魏正英, 盧秉恒. 鈦及鈦合金激光選區熔化技術的研究進展. 激光與光電子學進展, 2018, 55(1):21
    [2] Ge Y N, Wu M P, Mao Y Y, et al. Effect of scanning strategy on forming precision of titanium alloy by selective laser melting. Laser Optoelectron Prog, 2018, 55(9): 262

    葛亞楠, 武美萍, 冒浴沂, 等. 激光選區熔化掃描策略對鈦合金成形精度的影響. 激光與光電子學進展, 2018, 55(9):262
    [3] Zhang H. Research on the Solidification Microstructure Evolution of TC4 Alloy Fabricated by Selective Laser Melting [Dissertation]. Harbin: Harbin Institute of Technology, 2017

    張慧. 選區激光熔化TC4 合金的凝固組織演化規律研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017
    [4] Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape. Phys Procedia, 2010, 5: 551 doi: 10.1016/j.phpro.2010.08.083
    [5] Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater, 2016, 18(4): 463 doi: 10.1002/adem.201500419
    [6] Shi Q M, Gu D D, Xia M J, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol, 2016, 84: 9 doi: 10.1016/j.optlastec.2016.04.009
    [7] Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd, 2014, 583: 404 doi: 10.1016/j.jallcom.2013.08.183
    [8] Xie Y K. Numerical Investigation on Temperature Field and Flow Field During Selective Laser Melting of Ti−6Al−4V [Dissertation]. Beijing: Beijing University of Technology, 2018

    謝印開. 激光選區熔化Ti–6Al–4V 溫度場與流場的數值模擬[學位論文]. 北京: 北京工業大學, 2018
    [9] Dai N W, Zhang L C, Zhang J X, et al. Distinction in corrosion resistance of selective laser melted Ti?6Al?4V alloy on different planes. Corros Sci, 2016, 111: 703 doi: 10.1016/j.corsci.2016.06.009
    [10] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti?6Al?4V alloy in NaCl solution. Corros Sci, 2016, 102: 484 doi: 10.1016/j.corsci.2015.10.041
    [11] Chen L Y, Huang J C, Lin C H, et al. Anisotropic response of Ti?6Al?4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A, 2017, 682: 389 doi: 10.1016/j.msea.2016.11.061
    [12] Simonelli M. Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti−6Al−4V [Dissertation]. Leicestershire: Loughborough University, 2014
    [13] Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros Sci, 2016, 103: 50 doi: 10.1016/j.corsci.2015.11.003
    [14] Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008

    曹楚南. 腐蝕電化學原理. 3版. 北京: 化學工業出版社, 2008
    [15] Mansfeld F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros Sci, 2005, 47(12): 3178 doi: 10.1016/j.corsci.2005.04.012
    [16] Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
    [17] Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid. Electrochim Acta, 2014, 135: 526
    [18] Arrabal R, Matykina E, Viejo F, et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros Sci, 2008, 50(6): 1744 doi: 10.1016/j.corsci.2008.03.002
    [19] Wang B L, Zheng Y F, Zhao L C. Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9% NaCl solution. Mater Corros, 2009, 60(5): 330
    [20] Cui Z Y, Wang L W, Zhong M Y, et al. Electrochemical behavior and surface characteristics of pure titanium during corrosion in simulated desulfurized flue gas condensates. J Electrochem Soc, 2018, 165(9): C542 doi: 10.1149/2.1321809jes
    [21] Zhang H W, Man C, Wang L W, et al. Different corrosion behaviors between α and β phases of Ti6Al4V in fluoride-containing solutions: influence of alloying element Al. Corros Sci, 2020, 169: 108605 doi: 10.1016/j.corsci.2020.108605
    [22] Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys. Appl Surf Sci, 2005, 247(1-4): 347 doi: 10.1016/j.apsusc.2005.01.169
    [23] Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol–water electrolytes. Electrochim Acta, 2012, 78: 65 doi: 10.1016/j.electacta.2012.05.093
    [24] Nakagawa M, Matsuya S, Shiraishi T, et al. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res, 1999, 78(9): 1568 doi: 10.1177/00220345990780091201
    [25] Guo P F, Lin X, Li J Q, et al. Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections. Corros Sci, 2018, 132: 79 doi: 10.1016/j.corsci.2017.12.021
  • 加載中
圖(7)
計量
  • 文章訪問數:  959
  • HTML全文瀏覽量:  494
  • PDF下載量:  62
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-29
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回