<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

FeCrVTa0.4W0.4高熵合金氮化物薄膜的微觀結構與性能

王子鑫 張勇

王子鑫, 張勇. FeCrVTa0.4W0.4高熵合金氮化物薄膜的微觀結構與性能[J]. 工程科學學報, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004
引用本文: 王子鑫, 張勇. FeCrVTa0.4W0.4高熵合金氮化物薄膜的微觀結構與性能[J]. 工程科學學報, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004
WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004
Citation: WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004

FeCrVTa0.4W0.4高熵合金氮化物薄膜的微觀結構與性能

doi: 10.13374/j.issn2095-9389.2020.09.28.004
基金項目: 區域聯合基金資助項目(2019B1515120020);中央高校基本科研業務費資助項目(FRF-MP-19-013)
詳細信息
    通訊作者:

    E-mail:drzhangy@ustb.edu.cn

  • 中圖分類號: TG139

Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films

More Information
  • 摘要: 實驗利用單靶射頻磁控濺射技術,在單晶硅基底上,制備了兩個系列FeCrVTa0.4W0.4高熵合金氮化物薄膜,即FeCrVTa0.4W0.4氮化物成分梯度多層薄膜和(FeCrVTa0.4W0.4)Nx單層薄膜,其中,多層薄膜用于太陽光譜選擇性吸收薄膜。通過掃描電子顯微鏡(SEM)、X射線衍射儀(XRD)、納米力學探針、原子力顯微鏡(AFM)、紫外?可見分光光度計、接觸角測量儀和四探針測試臺對FeCrVTa0.4W0.4高熵合金氮化物薄膜進行微觀結構分析以及性能表征。結果表明:在不通入氮氣時,薄膜為非晶結構,當氮氣含量升高后,轉變為面心立方固溶體結構;當表層氮氣流量為15 mL·min?1時,FeCrVTa0.4W0.4氮化物多層薄膜及單層薄膜均具有最佳的力學性能,其中,多層薄膜的硬度為22.05 GPa,模量為287.4 GPa,單層薄膜的硬度為22.8 GPa,模量為280.7 GPa,隨著表層氮氣含量的繼續增加,力學性能下降;FeCrVTa0.4W0.4氮化物成分梯度多層薄膜在300~800 nm波長范圍內均具有太陽光譜選擇吸收性,當氮化物薄膜層數較少時具有較好的疏水性;(FeCrVTa0.4W0.4)Nx單層薄膜隨著氮氣含量的增加,薄膜方塊電阻增加。

     

  • 圖  1  FeCrVTa0.4W0.4氮化物成分梯度多層薄膜的截面及表面顯微照片。(a)N2-0截面;(b)N2-0表面;(c)N2-1截面;(d)N2-1表面;(e) N2-2截面;(f)N2-2表面;(g)N2-3截面;(h)N2-3表面

    Figure  1.  Cross-sectional and plane-view micrograph of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: cross-section (a) and plane-view (b) of N2-0; cross-section (c) and plane-view (d) of N2-1; cross-section (e) and plane-view (f) of N2-2; cross-section (g) and plane-view (h) of N2-3

    圖  2  不同氮氣流量下(FeCrVTa0.4W0.4)Nx單層薄膜的截面及表面顯微照片。(a)N2-15截面;(b)N2-15表面;(c)N2-30截面;(d)N2-30表面;(e)N2-45截面;(f)N2-45表面

    Figure  2.  Cross-sectional and plane-view micrograph of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows: cross-section (a) and plane-view (b) of N2-15; cross-section (c) and plane-view (d) of N2-30; cross-section (e) and plane-view (f) of N2-45

    圖  3  FeCrVTa0.4W0.4氮化物成分梯度多層薄膜的AFM表面形貌。(a) N2-0;(b)N2-1;(c)N2-2;(d)N2-3

    Figure  3.  AFM surface morphology of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: (a) N2-0; (b) N2-1; (c) N2-2; (d) N2-3

    圖  4  不同氮氣流量下(FeCrVTa0.4W0.4)Nx單層薄膜的AFM表面形貌。(a)N2-15;(b)N2-30;(c)N2-45

    Figure  4.  AFM surface morphology of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows: (a) N2-15; (b) N2-30; (c) N2-45

    圖  5  FeCrVTa0.4W0.4氮化物薄膜的XRD衍射圖。(a)FeCrVTa0.4W0.4氮化物成分梯度多層薄膜;(b) (FeCrVTa0.4W0.4)Nx單層薄膜

    Figure  5.  XRD diffraction patterns of FeCrVTa0.4W0.4 nitride films: (a)FeCrVTa0.4W0.4 nitride composition gradient multilayer films; (b) (FeCrVTa0.4W0.4)Nx single-layer films

    圖  6  FeCrVTa0.4W0.4氮化物薄膜的硬度和模量。(a) FeCrVTa0.4W0.4氮化物成分梯度多層薄膜;(b) (FeCrVTa0.4W0.4)Nx單層薄膜

    Figure  6.  Hardness and modulus of FeCrVTa0.4W0.4 nitride films: (a) FeCrVTa0.4W0.4 nitride composition gradient multilayer films; (b) (FeCrVTa0.4W0.4)Nx single-layer films

    圖  7  FeCrVTa0.4W0.4氮化物成分梯度多層梯度薄膜在不同波長下的反射率

    Figure  7.  Reflectivity ratio of FeCrVTa0.4W0.4 nitride composition gradient multilayer films at different wavelengths

    圖  8  FeCrVTa0.4W0.4氮化物成分梯度多層薄膜的水滴圖像。(a)N2-0;(b)N2-1;(c)N2-2;(d)N2-3

    Figure  8.  Water droplet image of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: (a)N2-0; (b) N2-1; (c) N2-2; (d) N2-3

    圖  9  不同氮氣流量下(FeCrVTa0.4W0.4)Nx單層薄膜的方塊電阻

    Figure  9.  Square resistance of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows

    表  1  FeCrVTa0.4W0.4氮化物成分梯度多層薄膜制備參數

    Table  1.   Preparation parameters of FeCrVTa0.4W0.4 nitride composition gradient multilayer films

    Number of film layerAr flow/
    (mL·min?1)
    N2 flow/
    (mL·min?1)
    Time/minRepresentation
    1130090N2-0
    2130/1300/1540/40N2-1
    3130/130/1300/15/3040/40/40N2-2
    4130/130/130/1300/15/30/4540/40/40/40N2-3
    下載: 導出CSV

    表  2  (FeCrVTa0.4W0.4)Nx單層薄膜制備參數

    Table  2.   Preparation parameters of (FeCrVTa0.4W0.4)Nx single-layer films

    Number of film layerAr flow/
    (mL·min?1)
    N2 flow/
    (mL·min?1)
    Time/minRepresentation
    1130090N2-0
    11301560N2-15
    11303060N2-30
    11304560N2-45
    下載: 導出CSV

    表  3  FeCrVTa0.4W0.4氮化物成分梯度多層薄膜在不同波長下的吸收率

    Table  3.   Absorptivity of FeCrVTa0.4W0.4 nitride composition gradient multilayer films at different wavelengths

    Different wavelength ranges/nmAbsorptivity/%
    N2-0N2-1N2-2N2-3
    625–76038.0649.6766.4679.13
    600–62540.6952.3869.0781.54
    580–60040.6052.6869.6282.05
    490–58043.6256.2672.3684.15
    450–49050.5962.0576.5486.86
    435–45049.4165.5378.8388.17
    390–43559.5670.6482.0289.82
    300–80048.7859.7274.0684.29
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int J Plast, 2017, 95: 264 doi: 10.1016/j.ijplas.2017.04.013
    [2] Sohn S, Liu Y H, Liu J B, et al. Noble metal high entropy alloys. Scripta Mater, 2017, 126: 29 doi: 10.1016/j.scriptamat.2016.08.017
    [3] Liu S, Gao M C, Liaw P K, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd, 2015, 619: 610 doi: 10.1016/j.jallcom.2014.09.073
    [4] Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66(10): 1984 doi: 10.1007/s11837-014-1085-x
    [5] Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038
    [6] Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002
    [7] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581
    [8] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
    [9] Wu B Q, Rao H C, Zhang C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5 NiBSix high-entropy alloy coatings. Surf Technol, 2015, 44(12): 85

    吳炳乾, 饒湖常, 張沖, 等. Si含量對FeCoCr0.5NiBSix高熵合金涂層組織結構和耐磨性的影響. 表面技術, 2015, 44(12):85
    [10] Butler T M, Weaver M L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals, 2016, 6(9): 222 doi: 10.3390/met6090222
    [11] Xie H B, Liu G Z, Guo J J, et al. Microstructure and high temperature oxidation properties of AlxFeCrCoCuTi high-entropy alloys with different Al contents. Rare Met, 2016, 40(4): 315

    謝紅波, 劉貴仲, 郭景杰, 等. 添加Al對AlxFeCrCoCuTi高熵合金組織與高溫氧化性能的影響. 稀有金屬, 2016, 40(4):315
    [12] Xie H B, Liu G Z, Guo J J. Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high-entropy alloys. Chin J Nonferrous Met, 2015, 25(1): 103 doi: 10.1016/S1003-6326(15)63584-1

    謝紅波, 劉貴仲, 郭景杰. Mn、V、Mo、Ti、Zr元素對AlFeCrCoCu-X高熵合金組織與高溫氧化性能的影響. 中國有色金屬學報, 2015, 25(1):103 doi: 10.1016/S1003-6326(15)63584-1
    [13] Li P P, Wang A D, Liu C T. A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd, 2017, 694: 55 doi: 10.1016/j.jallcom.2016.09.186
    [14] Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013
    [15] Zuo T T, Yang X, Liaw P K, et al. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67: 171 doi: 10.1016/j.intermet.2015.08.014
    [16] Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J Magn Magn Mater, 2014, 355: 58 doi: 10.1016/j.jmmm.2013.11.049
    [17] Komarov F F, Pogrebnyak A D, Konstantinov S V. Radiation resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings. Tech Phys, 2015, 60(10): 1519 doi: 10.1134/S1063784215100187
    [18] Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007
    [19] Egami T, Ojha M, Khorgolkhuu O, et al. Local electronic effects and irradiation resistance in high-entropy alloys. JOM, 2015, 67(10): 2345 doi: 10.1007/s11837-015-1579-1
    [20] He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501

    何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501
    [21] Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98

    閆薛卉, 張勇. 高熵薄膜和成分梯度材料. 表面技術, 2019, 48(6):98
    [22] Feng X G, Zhang K F, Zheng Y G, et al. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater Chem Phys, 2020, 239: 121991 doi: 10.1016/j.matchemphys.2019.121991
    [23] Hsieh T H, Hsu C H, Wu C Y, et al. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr Appl Phys, 2018, 18(5): 512 doi: 10.1016/j.cap.2018.02.015
    [24] von Fieandt K, Paschalidou E M, Srinath A, et al. Multi-component (Al, Cr, Nb, Y, Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693: 137685 doi: 10.1016/j.tsf.2019.137685
    [25] Xing Q W, Xia S Q, Yan X H, et al. Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures. J Mater Res, 2018, 33(19): 3347 doi: 10.1557/jmr.2018.337
    [26] Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023
    [27] Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf Coat Technol, 2009, 203(13): 1891 doi: 10.1016/j.surfcoat.2009.01.016
    [28] Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol, 2012, 211: 117 doi: 10.1016/j.surfcoat.2011.09.033
    [29] Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444
    [30] Zhang W R, Liaw P K, Zhang Y. A novel low-activation VCrFeTaxWx (x=0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 2018, 20(12): 951 doi: 10.3390/e20120951
    [31] Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)?(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  1210
  • HTML全文瀏覽量:  527
  • PDF下載量:  79
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-28
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回