-
摘要: 實驗利用單靶射頻磁控濺射技術,在單晶硅基底上,制備了兩個系列FeCrVTa0.4W0.4高熵合金氮化物薄膜,即FeCrVTa0.4W0.4氮化物成分梯度多層薄膜和(FeCrVTa0.4W0.4)Nx單層薄膜,其中,多層薄膜用于太陽光譜選擇性吸收薄膜。通過掃描電子顯微鏡(SEM)、X射線衍射儀(XRD)、納米力學探針、原子力顯微鏡(AFM)、紫外?可見分光光度計、接觸角測量儀和四探針測試臺對FeCrVTa0.4W0.4高熵合金氮化物薄膜進行微觀結構分析以及性能表征。結果表明:在不通入氮氣時,薄膜為非晶結構,當氮氣含量升高后,轉變為面心立方固溶體結構;當表層氮氣流量為15 mL·min?1時,FeCrVTa0.4W0.4氮化物多層薄膜及單層薄膜均具有最佳的力學性能,其中,多層薄膜的硬度為22.05 GPa,模量為287.4 GPa,單層薄膜的硬度為22.8 GPa,模量為280.7 GPa,隨著表層氮氣含量的繼續增加,力學性能下降;FeCrVTa0.4W0.4氮化物成分梯度多層薄膜在300~800 nm波長范圍內均具有太陽光譜選擇吸收性,當氮化物薄膜層數較少時具有較好的疏水性;(FeCrVTa0.4W0.4)Nx單層薄膜隨著氮氣含量的增加,薄膜方塊電阻增加。Abstract: Recently, research on high-entropy alloys has developed rapidly. While studying high-entropy alloys in bulk, scholars have also conducted in-depth research on high-entropy alloy films, especially high-entropy alloy nitride films. Compared with traditional binary and ternary nitride films, high-entropy alloy nitride films have a simpler and denser structure and better performance, and therefore have great prospects for application in many fields. Research on high-entropy alloy nitride films is still relatively scarce, and the influencing factors of phase structure transformation and mechanical properties need to be further explored. Therefore, it will be an important research direction in the future. Based on a single-target Radio Frequency (RF) magnetron sputtering technique, two series of FeCrVTa0.4W0.4 high-entropy alloy nitride films were fabricated on monocrystalline silicon substrates. These are FeCrVTa0.4W0.4 nitride composition gradient multilayer films and (FeCrVTa0.4W0.4)Nx single-layer films, in which multilayer films are used for solar spectral selective absorption films. Through scanning electron microscope (SEM), X-ray diffractometer (XRD), nanomechanical probe, atomic force microscopy, UV–visible spectrophotometry, contact angle measuring instrument, and four-probe tester, the microstructure, and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films were analyzed. The results show that the film is amorphous when nitrogen is not introduced. When nitrogen content increases, nitride films are face-center-cubic solid solution in structure. When the surface nitrogen flow rate is 15 sccm, the FeCrVTa0.4W0.4 nitride multilayer film and the single-layer film have the best mechanical properties. Among them, the hardness of the multilayer film is 22.05 GPa and the modulus is 287.4 GPa; the hardness of the single-layer film is 22.8 GPa, and the modulus is 280.7 GPa. As the nitrogen content on the surface continues to increase, the mechanical properties decrease. FeCrVTa0.4W0.4 nitride composition gradient multilayer films have solar spectrum selective absorptivity in the wavelength range of 300–800 nm and have better hydrophobicity when the number of nitride films layer is small. With increasing nitrogen content, the block resistance of (FeCrVTa0.4W0.4)Nx single-layer film increases.
-
Key words:
- high-entropy alloy /
- megnetron sputtering /
- nitride films /
- composition gradient /
- optical property
-
圖 1 FeCrVTa0.4W0.4氮化物成分梯度多層薄膜的截面及表面顯微照片。(a)N2-0截面;(b)N2-0表面;(c)N2-1截面;(d)N2-1表面;(e) N2-2截面;(f)N2-2表面;(g)N2-3截面;(h)N2-3表面
Figure 1. Cross-sectional and plane-view micrograph of FeCrVTa0.4W0.4 nitride composition gradient multilayer films: cross-section (a) and plane-view (b) of N2-0; cross-section (c) and plane-view (d) of N2-1; cross-section (e) and plane-view (f) of N2-2; cross-section (g) and plane-view (h) of N2-3
圖 2 不同氮氣流量下(FeCrVTa0.4W0.4)Nx單層薄膜的截面及表面顯微照片。(a)N2-15截面;(b)N2-15表面;(c)N2-30截面;(d)N2-30表面;(e)N2-45截面;(f)N2-45表面
Figure 2. Cross-sectional and plane-view micrograph of (FeCrVTa0.4W0.4)Nx single-layer films at different N2 flows: cross-section (a) and plane-view (b) of N2-15; cross-section (c) and plane-view (d) of N2-30; cross-section (e) and plane-view (f) of N2-45
表 1 FeCrVTa0.4W0.4氮化物成分梯度多層薄膜制備參數
Table 1. Preparation parameters of FeCrVTa0.4W0.4 nitride composition gradient multilayer films
Number of film layer Ar flow/
(mL·min?1)N2 flow/
(mL·min?1)Time/min Representation 1 130 0 90 N2-0 2 130/130 0/15 40/40 N2-1 3 130/130/130 0/15/30 40/40/40 N2-2 4 130/130/130/130 0/15/30/45 40/40/40/40 N2-3 表 2 (FeCrVTa0.4W0.4)Nx單層薄膜制備參數
Table 2. Preparation parameters of (FeCrVTa0.4W0.4)Nx single-layer films
Number of film layer Ar flow/
(mL·min?1)N2 flow/
(mL·min?1)Time/min Representation 1 130 0 90 N2-0 1 130 15 60 N2-15 1 130 30 60 N2-30 1 130 45 60 N2-45 表 3 FeCrVTa0.4W0.4氮化物成分梯度多層薄膜在不同波長下的吸收率
Table 3. Absorptivity of FeCrVTa0.4W0.4 nitride composition gradient multilayer films at different wavelengths
Different wavelength ranges/nm Absorptivity/% N2-0 N2-1 N2-2 N2-3 625–760 38.06 49.67 66.46 79.13 600–625 40.69 52.38 69.07 81.54 580–600 40.60 52.68 69.62 82.05 490–580 43.62 56.26 72.36 84.15 450–490 50.59 62.05 76.54 86.86 435–450 49.41 65.53 78.83 88.17 390–435 59.56 70.64 82.02 89.82 300–800 48.78 59.72 74.06 84.29 259luxu-164 -
參考文獻
[1] Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int J Plast, 2017, 95: 264 doi: 10.1016/j.ijplas.2017.04.013 [2] Sohn S, Liu Y H, Liu J B, et al. Noble metal high entropy alloys. Scripta Mater, 2017, 126: 29 doi: 10.1016/j.scriptamat.2016.08.017 [3] Liu S, Gao M C, Liaw P K, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd, 2015, 619: 610 doi: 10.1016/j.jallcom.2014.09.073 [4] Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66(10): 1984 doi: 10.1007/s11837-014-1085-x [5] Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038 [6] Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002 [7] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581 [8] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004 [9] Wu B Q, Rao H C, Zhang C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5 NiBSix high-entropy alloy coatings. Surf Technol, 2015, 44(12): 85吳炳乾, 饒湖常, 張沖, 等. Si含量對FeCoCr0.5NiBSix高熵合金涂層組織結構和耐磨性的影響. 表面技術, 2015, 44(12):85 [10] Butler T M, Weaver M L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals, 2016, 6(9): 222 doi: 10.3390/met6090222 [11] Xie H B, Liu G Z, Guo J J, et al. Microstructure and high temperature oxidation properties of AlxFeCrCoCuTi high-entropy alloys with different Al contents. Rare Met, 2016, 40(4): 315謝紅波, 劉貴仲, 郭景杰, 等. 添加Al對AlxFeCrCoCuTi高熵合金組織與高溫氧化性能的影響. 稀有金屬, 2016, 40(4):315 [12] Xie H B, Liu G Z, Guo J J. Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high-entropy alloys. Chin J Nonferrous Met, 2015, 25(1): 103 doi: 10.1016/S1003-6326(15)63584-1謝紅波, 劉貴仲, 郭景杰. Mn、V、Mo、Ti、Zr元素對AlFeCrCoCu-X高熵合金組織與高溫氧化性能的影響. 中國有色金屬學報, 2015, 25(1):103 doi: 10.1016/S1003-6326(15)63584-1 [13] Li P P, Wang A D, Liu C T. A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd, 2017, 694: 55 doi: 10.1016/j.jallcom.2016.09.186 [14] Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013 [15] Zuo T T, Yang X, Liaw P K, et al. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67: 171 doi: 10.1016/j.intermet.2015.08.014 [16] Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J Magn Magn Mater, 2014, 355: 58 doi: 10.1016/j.jmmm.2013.11.049 [17] Komarov F F, Pogrebnyak A D, Konstantinov S V. Radiation resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings. Tech Phys, 2015, 60(10): 1519 doi: 10.1134/S1063784215100187 [18] Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007 [19] Egami T, Ojha M, Khorgolkhuu O, et al. Local electronic effects and irradiation resistance in high-entropy alloys. JOM, 2015, 67(10): 2345 doi: 10.1007/s11837-015-1579-1 [20] He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501 [21] Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98閆薛卉, 張勇. 高熵薄膜和成分梯度材料. 表面技術, 2019, 48(6):98 [22] Feng X G, Zhang K F, Zheng Y G, et al. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater Chem Phys, 2020, 239: 121991 doi: 10.1016/j.matchemphys.2019.121991 [23] Hsieh T H, Hsu C H, Wu C Y, et al. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr Appl Phys, 2018, 18(5): 512 doi: 10.1016/j.cap.2018.02.015 [24] von Fieandt K, Paschalidou E M, Srinath A, et al. Multi-component (Al, Cr, Nb, Y, Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693: 137685 doi: 10.1016/j.tsf.2019.137685 [25] Xing Q W, Xia S Q, Yan X H, et al. Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures. J Mater Res, 2018, 33(19): 3347 doi: 10.1557/jmr.2018.337 [26] Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023 [27] Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf Coat Technol, 2009, 203(13): 1891 doi: 10.1016/j.surfcoat.2009.01.016 [28] Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol, 2012, 211: 117 doi: 10.1016/j.surfcoat.2011.09.033 [29] Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444 [30] Zhang W R, Liaw P K, Zhang Y. A novel low-activation VCrFeTaxWx (x=0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 2018, 20(12): 951 doi: 10.3390/e20120951 [31] Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)?(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055 -