<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬薄板面內壓剪變形的損傷斷裂行為

錢凌云 馬騰云 安鵬 紀婉婷 孫朝陽

錢凌云, 馬騰云, 安鵬, 紀婉婷, 孫朝陽. 金屬薄板面內壓剪變形的損傷斷裂行為[J]. 工程科學學報, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002
引用本文: 錢凌云, 馬騰云, 安鵬, 紀婉婷, 孫朝陽. 金屬薄板面內壓剪變形的損傷斷裂行為[J]. 工程科學學報, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002
QIAN Ling-yun, MA Teng-yun, AN Peng, JI Wan-ting, SUN Chao-yang. Damage and fracture behavior of a metal sheet under in-plane compression–shear deformation[J]. Chinese Journal of Engineering, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002
Citation: QIAN Ling-yun, MA Teng-yun, AN Peng, JI Wan-ting, SUN Chao-yang. Damage and fracture behavior of a metal sheet under in-plane compression–shear deformation[J]. Chinese Journal of Engineering, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002

金屬薄板面內壓剪變形的損傷斷裂行為

doi: 10.13374/j.issn2095-9389.2020.09.23.002
基金項目: 國家自然科學基金資助項目(51805023);北京市自然科學基金資助項目(3184056);中央高校基礎科研業務費資助項目(FRF-TP-20-009A2);中南大學高性能復雜制造國家重點實驗室開放基金資助項目(Kfkt2017-03)
詳細信息
    通訊作者:

    E-mail:qianly@ustb.edu.cn

  • 中圖分類號: TG30

Damage and fracture behavior of a metal sheet under in-plane compression–shear deformation

More Information
  • 摘要: 相變誘導塑性鋼(TRansformation induced plasticity, TRIP)作為常用的先進高強鋼在汽車等交通工具的輕量化方面有廣泛的應用前景。而對于其復雜零件的成形過程,韌性斷裂是不可忽視的問題之一。本文針對現有實驗裝置不易誘發薄板承受面內壓剪時斷裂失效,從而無法研究板料負應力三軸度區間斷裂行為的問題,以高強鋼TRIP800薄板為研究對象,設計了可在單向試驗機完成壓剪實驗的試樣和夾具。通過調整夾具旋轉角度和試樣裝夾位置可以實現同一種試樣在廣泛的負應力三軸度范圍內進行壓剪斷裂分析。基于ABAQUS/Explicit平臺建立了三個典型加載方向20°、30°和45°對應的壓剪過程有限元模型,分析表明:三種情況的試樣局部變形區域的應力三軸度都小于0且斷裂點的應力三軸度低至?0.485,驗證了設計的裝置可實現負應力三軸度區間的斷裂失效分析,同時基于MMC斷裂準則分析了不同應力狀態的初始損傷情況及損傷擴展路徑。

     

  • 圖  1  板料面內壓剪實驗原理示意圖

    Figure  1.  Schematic of the in-plane compression–shear experiment

    圖  2  試樣結構和尺寸圖。(a)結構圖;(b)尺寸圖(單位: mm)

    Figure  2.  Geometrical characteristics and dimensions of the specimen: (a) structure diagram;(b) dimensions diagram (unit: mm)

    圖  3  實驗夾具組件與裝配

    Figure  3.  Experimental setup of the in-plane compression–shear experiment

    圖  4  夾具體安全性分析

    Figure  4.  Safety analysis of fixture

    圖  5  試樣有限元網格

    Figure  5.  Finite element mesh of the specimen

    圖  6  TRIP800鋼板的應力–應變曲線

    Figure  6.  True stress–plastic strain curve of the TRIP800 sheet

    圖  7  三種加載角度的載荷?位移曲線

    Figure  7.  Force–displacement responses of three loading angles

    圖  8  α=45°時試樣局部變形區損傷演化圖。(a)d=3.9 mm;(b)d=4.1 mm;(c)d=4.3 mm;(d)d=4.7 mm

    Figure  8.  Damage evolution of the local deformation zone of the specimen for α = 45°: (a) d=3.9 mm; (b) d=4.1 mm; (c) d=4.3 mm; (d) d=4.7 mm

    圖  9  三種加載角度試樣局部變形區在初始斷裂時刻的應力三軸度

    Figure  9.  Stress triaxiality in local deformation zones for specimens under different loading angles at fracture onset

    圖  10  三種加載角度試樣變形區不同位置η的演化圖

    Figure  10.  Evolution of η at different positions during the experiment under different loading angles

    圖  11  不同加載角度時試樣損傷因子D隨加載位移d的演化圖

    Figure  11.  Evolution of a damage factor D with loading displacement d for different loading angles

    表  1  H13鋼和40Cr的材料屬性

    Table  1.   Material properties of H13 and 40Cr

    MaterialDensity/
    (kg?m?3)
    Young’s
    modulus/
    MPa
    Poisson’s
    ratio
    Yield strength/
    MPa
    Tensile strength/
    MPa
    H1378502100000.315501800
    40Cr79002100000.28785810
    下載: 導出CSV

    表  2  三個方向的厚向異性系數及Hill’48函數的六個各向異性參數

    Table  2.   Three Lankford ratios and six anisotropic parameters of the Hill’48 function

    r0r45r90GKMNPQ
    0.870.811.030.4520.5350.4651.51.51.289
    下載: 導出CSV

    表  3  不同加載角度試樣的初始斷裂應變和應力三軸度關系

    Table  3.   Initial fracture strain and stress triaxiality at the fracture onset of specimens under different loading angles

    Loading angle, α/(°)DisplacementFracture strainStress triaxiality, η
    202.10.60?0.485
    302.70.75?0.424
    454.11.06?0.419
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Liu W H. Research on Application of High Strength Steel in Automotive Lightweight [Dissertation]. Wuhan: Wuhan University of Technology, 2009.

    劉文華. 高強度鋼板在汽車輕量化中的應用研究[學位論文]. 武漢: 武漢理工大學, 2009.
    [2] Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A, 2011, 528(13-14): 4516 doi: 10.1016/j.msea.2011.02.032
    [3] Lou Y S, Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation. J Mater Process Technol, 2013, 213(8): 1284 doi: 10.1016/j.jmatprotec.2013.03.001
    [4] Li Y N, Luo M, Gerlach J, et al. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol, 2010, 210(14): 1858 doi: 10.1016/j.jmatprotec.2010.06.021
    [5] Choi K S, Liu W N, Sun X, et al. Microstructure-based constitutive modeling of TRIP steel: prediction of ductility and failure modes under different loading conditions. Acta Mater, 2009, 57(8): 2592 doi: 10.1016/j.actamat.2009.02.020
    [6] Zhu H, Zhu L, Chen J H, et al. Investigation of fracture mechanism of 6063 aluminum alloy under different stress states. Int J Fract, 2007, 146(3): 159 doi: 10.1007/s10704-007-9158-2
    [7] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci, 2004, 46(1): 81 doi: 10.1016/j.ijmecsci.2004.02.006
    [8] Shouler D R, Allwood J M. Design and use of a novel sample design for formability testing in pure shear. J Mater Process Technol, 2010, 210(10): 1304 doi: 10.1016/j.jmatprotec.2010.03.019
    [9] Mu L, Zang Y, Araujo S P M. A micromechanically motivated uncoupled model for ductile fracture prediction. Chin J Eng, 2017, 39(4): 557

    穆磊, 臧勇, Araujo S P M. 一個基于孔洞演化機制的韌性斷裂預測模型. 工程科學學報, 2017, 39(4):557
    [10] Han G Z, Cai L X, Yao D, et al. Fracture criterion and plane-strain fracture toughness of ductile materials. Acta Aeron Astron Sin, 2018, 39(8): 145

    韓光照, 蔡力勛, 姚迪, 等. 延性材料斷裂準則與平面應變斷裂韌度. 航空學報, 2018, 39(8):145
    [11] Jia Z, Mu L, Zang Y. Research progress on the micro-mechanism and prediction models of ductile fracture in metal forming. Chin J Eng, 2018, 40(12): 1454

    賈哲, 穆磊, 臧勇. 金屬塑性成形中的韌性斷裂微觀機理及預測模型的研究進展. 工程科學學報, 2018, 40(12):1454
    [12] Zhu Y Z, Kiran R, Xing J H, et al. A modified micromechanics framework to predict shear involved ductile fracture in structural steels at intermediate and low-stress triaxialities. Eng Fract Mech, 2020, 225: 106860 doi: 10.1016/j.engfracmech.2019.106860
    [13] Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast, 2014, 54: 56
    [14] Kubík P, ?ebek F, H?lka J, et al. Calibration of ductile fracture criteria at negative stress triaxiality. Int J Mech Sci, 2016, 108-109: 90
    [15] Li C. Analysis and Application of the Instability of Thin-Walled Materials in Plastic Forming Process [Dissertation]. Beijing: Beijing Institute of Technology, 2017

    李翀. 薄壁材料在塑性加工中的失穩現象分析與應用[學位論文]. 北京: 北京理工大學, 2017
    [16] Huang G S, Wang L F, Wang Y X, et al. An Auxiliary Tool for Thin Plate Material Compression and Its Application: China Patent, CN103335883A. 2013-10-02

    黃光勝, 王利飛, 王艷霞, 等. 一種薄板材料壓縮輔助工具及使用方法: 中國專利, CN103335883A. 2013-10-02
    [17] Mohr D, Henn S. Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental–numerical method. Exp Mech, 2007, 47(6): 805 doi: 10.1007/s11340-007-9039-7
    [18] Brünig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. Int J Plast, 2018, 102: 70
    [19] Gerke S, Zistl M, Bhardwaj A, et al. Experiments with the X0-specimen on the effect of non-proportional loading paths on damage and fracture mechanisms in aluminum alloys. Int J Solids Struct, 2019, 163: 157 doi: 10.1016/j.ijsolstr.2019.01.007
    [20] Xu Q S, Zhuang X C, Fang Y Y, et al. A novel test method for symmetrical sheet metal compression-shear. J Shanghai Jiaotong Univ, 2015, 49(10): 1510

    徐芹所, 莊新村, 方勇勇, 等. 一種新的金屬板料雙向壓縮剪切試驗方法. 上海交通大學學報, 2015, 49(10):1510
    [21] Wu Y J, Zhuang X C, Zhao Z. Fracture topography analysis of C45 steel under different stress states. J Plast Eng, 2013, 20(3): 106 doi: 10.3969/j.issn.1007-2012.2013.03.020

    吳彥駿, 莊新村, 趙震. 不同應力狀態下45鋼斷口形貌分析. 塑性工程學報, 2013, 20(3):106 doi: 10.3969/j.issn.1007-2012.2013.03.020
    [22] Wu H, Xu W C, Shan S B, et al. An extended GTN model for low stress triaxiality and application in spinning forming. J Mater Process Technol, 2019, 263: 112
    [23] Lou Y S, Yoon J W, Huh H, et al. Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio. Int J Mech Sci, 2018, 146-147: 583 doi: 10.1016/j.ijmecsci.2018.03.025
    [24] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A, 1948, 193(1033): 281
    [25] Qian L Y, Fang G, Zeng P. Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic. Int J Mech Sci, 2017, 126: 55 doi: 10.1016/j.ijmecsci.2017.03.013
    [26] Reis L C, Prates P A, Oliveira M C, et al. Inverse identification of the Swift law parameters using the bulge test. Int J Mater Form, 2017, 10(4): 493 doi: 10.1007/s12289-016-1296-5
    [27] Bai Y L, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract, 2010, 161(1): 1
    [28] Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct, 2007, 44(16): 5163
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數:  3179
  • HTML全文瀏覽量:  652
  • PDF下載量:  71
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-23
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回