<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于魯棒H濾波的鋰離子電池SOC估計

潘鳳文 弓棟梁 高瑩 寇亞林

潘鳳文, 弓棟梁, 高瑩, 寇亞林. 基于魯棒H∞濾波的鋰離子電池SOC估計[J]. 工程科學學報, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002
引用本文: 潘鳳文, 弓棟梁, 高瑩, 寇亞林. 基于魯棒H濾波的鋰離子電池SOC估計[J]. 工程科學學報, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002
PAN Feng-wen, GONG Dong-liang, GAO ying, KOU Ya-lin. Lithium-ion battery state of charge estimation based on a robust H∞ filter[J]. Chinese Journal of Engineering, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002
Citation: PAN Feng-wen, GONG Dong-liang, GAO ying, KOU Ya-lin. Lithium-ion battery state of charge estimation based on a robust H filter[J]. Chinese Journal of Engineering, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002

基于魯棒H濾波的鋰離子電池SOC估計

doi: 10.13374/j.issn2095-9389.2020.09.21.002
基金項目: 國家重點研發計劃資助項目(2016YFB0100300)
詳細信息
    通訊作者:

    E-mail:gaoying@jlu.edu.cn

  • 中圖分類號: TM911.3

Lithium-ion battery state of charge estimation based on a robust H filter

More Information
  • 摘要: 荷電狀態(State of charge, SOC)估計是電池管理系統的核心功能之一,它在電動汽車的生命周期中起著重要作用。針對鋰離子電池溫度影響模型參數,進而導致SOC估計不準確的問題,本文提出了基于魯棒H濾波的SOC估計方法。首先,以二階Thevenin等效電路模型做為鋰離子電池基礎模型,并將溫度對電池模型參數的影響建模為標稱電阻值和電池總容量的加性變量,視溫度變化為系統的外部擾動。其次,采用滑動線性法對電池模型進行線性化,并在此基礎上運用線性矩陣不等式技術設計了對SOC進行估計的魯棒H濾波器。最后,分別采用四種不同類型的動態電流激勵進行仿真實驗驗證,并將SOC的估計結果與kalman濾波對SOC的估計結果進行對比。結果表明所設計的魯棒H濾波器能夠實現對SOC更為準確的跟蹤,同時對外部擾動具有較好的魯棒性。

     

  • 圖  1  等效電路模型

    Figure  1.  Equivalent circuit model

    圖  2  BJDST,FUDS,US06動態測試時間歷程

    Figure  2.  BJDST, FUDS, US06 dynamic test time history

    圖  3  BJDST?FUDS?US06聯合動態測試時間歷程

    Figure  3.  BJDST?FUDS?US06 joint dynamic test time history

    圖  4  BJDST激勵的SOC估計

    Figure  4.  SOC estimation excited by BJDST

    圖  5  BJDST激勵的SOC估計誤差

    Figure  5.  SOC estimation error excited by BJDST

    圖  6  FUDS激勵的SOC估計

    Figure  6.  SOC estimation excited by FUDS

    圖  7  FUDS激勵的SOC估計誤差

    Figure  7.  SOC estimation error excited by FUDS

    圖  8  US06激勵的SOC估計

    Figure  8.  SOC estimation excited by US06

    圖  9  US06激勵的SOC估計誤差

    Figure  9.  SOC estimation error excited by US06

    圖  10  BJDST?FUDS?US06激勵的SOC估計

    Figure  10.  SOC estimation excited by BJDST?FUDS?US06

    圖  11  BJDST?FUDS?US06 US06激勵的SOC估計誤差

    Figure  11.  SOC estimation error excited by BJDST?FUDS?US06

    表  1  電池模型參數

    Table  1.   Battery model parameters

    R0 / ΩR1 / ΩR2 / ΩC1 / FC2 / FQ /(A·h)ab
    0.008670.01240.01232239418312.31/33.05
    下載: 導出CSV

    表  2  SOC估計及其估計誤差的均方根值

    Table  2.   RMS value of SOC estimation and estimation error

    Dynamic testModel output
    (RMS)
    H filter
    (RMS)
    Kalman filter
    (RMS)
    BJDST0.48740.48790.4861
    BJDST estimation error0.00190.0041
    FUDS0.47030.47040.4694
    FUDS estimation error0.00180.0036
    US060.49910.49920.4986
    US06 estimation error0.00190.0043
    BJDST?FUDS?US060.31860.31860.3175
    BJDST?FUDS?US06 estimation error0.00220.0033
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang X L, Jin H Q, Liu X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model. Chin J Eng, 2020, 42(9): 1200

    王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計. 工程科學學報, 2020, 42(9):1200
    [2] Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195

    蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195
    [3] Liu X T, Sun Z C, He Y, et al. SOC estimation method based on lithium-ion cell model considering environmental factors. J Southeast Univ Nat Sci Ed, 2017, 47(2): 306 doi: 10.3969/j.issn.1001-0505.2017.02.018

    劉新天, 孫張馳, 何耀, 等. 基于環境變量建模的鋰電池SOC估計方法. 東南大學學報(自然科學版), 2017, 47(2):306 doi: 10.3969/j.issn.1001-0505.2017.02.018
    [4] Feng D W, Lu C, Chen Y, et. al. Battery state-of-charge online estimation based on H observer with current debasing and noise distributions. J Univ Electron Sci Technol China, 2017, 46(4): 547 doi: 10.3969/j.issn.1001-0548.2017.04.012

    馮代偉, 陸超, 陳勇, 等. 具有電流偏差和噪聲擾動的H觀測器在線估計電池SoC狀態. 電子科技大學學報, 2017, 46(4):547 doi: 10.3969/j.issn.1001-0548.2017.04.012
    [5] Lin X F, Kim Y, Mohan S, et al. Modeling and estimation for advanced battery management. Ann Rev Control Rob Autonom Syst, 2019, 2: 393 doi: 10.1146/annurev-control-053018-023643
    [6] Miao Z X, Xu L, Disfani V R, et al. An SOC-based battery management system for microgrids. IEEE Trans Smart Grid, 2014, 5(2): 966 doi: 10.1109/TSG.2013.2279638
    [7] Tan F M, Zhao J J, Wang Q. A novel robust UKF algorithm for SOC estimation of traction battery. Autom Eng, 2019, 41(8): 944

    談發明, 趙俊杰, 王琪. 動力電池SOC估計的一種新型魯棒UKF算法. 汽車工程, 2019, 41(8):944
    [8] Cheng K W E, Divakar B P, Wu H J, et al. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Veh Technol, 2011, 60(1): 76 doi: 10.1109/TVT.2010.2089647
    [9] Dey S, Ayalew B. Nonlinear observer designs for state-of-charge estimation of lithium-ion batteries // 2014 American Control Conference. Portland, 2014: 248
    [10] Bhangu B S, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans Veh Technol, 2005, 54(3): 783 doi: 10.1109/TVT.2004.842461
    [11] He H W, Xiong R, Fan J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies, 2011, 4(4): 582 doi: 10.3390/en4040582
    [12] Ding Z T, Deng T, Li Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. China Mech Eng, 2020, 31(15): 1823 doi: 10.3969/j.issn.1004-132X.2020.15.009

    丁鎮濤, 鄧濤, 李志飛, 等. 基于安時積分和無跡卡爾曼濾波的鋰離子電池SOC估算方法研究. 中國機械工程, 2020, 31(15):1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
    [13] Jin B W, Qiao H M, Pan T H, et al. Lithium battery SOC estimation based on internal resistance power consumption. Autom Eng, 2020, 42(8): 1008

    靳博文, 喬慧敏, 潘天紅, 等. 基于內阻功率消耗的鋰電池SOC估計. 汽車工程, 2020, 42(8):1008
    [14] Codeca F, Savaresi S M, Rizzoni G. On battery state of charge estimation: A new mixed algorithm // 2008 IEEE International Conference on Control Applications. San Antonio, 2008: 102
    [15] Hu Y R, Yurkovich S. Battery state of charge estimation in automotive applications using LPV techniques // Proceedings of the 2010 American Control Conference. Baltimore, 2010: 5043
    [16] Hu Y, Yurkovich S. Battery cell state-of-charge estimation using linear parameter varying system techniques. J Power Sources, 2012, 198: 338 doi: 10.1016/j.jpowsour.2011.09.058
    [17] Zhang Y, Zhang C H, Zhang X F. State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles. IET Control Theory Appl, 2013, 8(3): 160
    [18] Liu C Z, Zhu Q, Li L, et al. A state of charge estimation method based on H∞ observer for switched systems of lithium-ion nickel-manganese-cobalt batteries. IEEE Trans Ind Electron, 2017, 64(10): 8128 doi: 10.1109/TIE.2017.2701766
    [19] Dey S, Ayalew B, Pisu P. Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model. IEEE Trans Control Syst Technol, 2015, 23(5): 1935 doi: 10.1109/TCST.2014.2382635
    [20] Wang T H, Martinez-Molina J J, Sename O. H observer-based battery fault estimation for HEV application. IFAC Proc Vol, 2012, 45(30): 206 doi: 10.3182/20121023-3-FR-4025.00021
    [21] Zhu Q, Li L, Hu X S, et al. H-based nonlinear observer design for state of charge estimation of lithium-ion battery with polynomial parameters. IEEE Trans Veh Technol, 2017, 66(12): 10853 doi: 10.1109/TVT.2017.2723522
    [22] Dreef H J, Beelen H P G J, Donkers M C F. LMI-based robust observer design for battery state-of-charge estimation // 2018 IEEE Conference on Decision and Control (CDC). Miami Beach, 2018: 5716
    [23] Wang B J, Liu Z Y, Li S E, et al. State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model. IEEE Trans Control Syst Technol, 2017, 25(1): 3 doi: 10.1109/TCST.2016.2557221
    [24] Lu W, Xu D, Yang Q X, et al. Fractional model and state-of-charge of lithium battery. J Xi'an Jiaotong Univ, 2017, 51(7): 124

    魯偉, 續丹, 楊晴霞, 等. 鋰電池分數階建模與荷電狀態研究. 西安交通大學學報, 2017, 51(7):124
    [25] Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB // 2004 IEEE International Conference on Robotics and Automation. New Orleans, 2004: 284
    [26] L?fberg J. Modeling and solving uncertain optimization problems in YALMIP // Proceedings of the 17th IFAC World Congress. Seoul, 2008: 1337
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  2315
  • HTML全文瀏覽量:  610
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-21
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回