<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

制備類石墨相氮化碳多孔光催化劑的模板法發展

鞏正奇 閆楚璇 宣之易 陳穎芝 李靜媛 王魯寧

鞏正奇, 閆楚璇, 宣之易, 陳穎芝, 李靜媛, 王魯寧. 制備類石墨相氮化碳多孔光催化劑的模板法發展[J]. 工程科學學報, 2021, 43(3): 345-354. doi: 10.13374/j.issn2095-9389.2020.09.07.003
引用本文: 鞏正奇, 閆楚璇, 宣之易, 陳穎芝, 李靜媛, 王魯寧. 制備類石墨相氮化碳多孔光催化劑的模板法發展[J]. 工程科學學報, 2021, 43(3): 345-354. doi: 10.13374/j.issn2095-9389.2020.09.07.003
GONG Zheng-qi, YAN Chu-xuan, XUAN Zhi-yi, CHEN Ying-zhi, LI Jing-yuan, WANG Lu-ning. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride[J]. Chinese Journal of Engineering, 2021, 43(3): 345-354. doi: 10.13374/j.issn2095-9389.2020.09.07.003
Citation: GONG Zheng-qi, YAN Chu-xuan, XUAN Zhi-yi, CHEN Ying-zhi, LI Jing-yuan, WANG Lu-ning. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride[J]. Chinese Journal of Engineering, 2021, 43(3): 345-354. doi: 10.13374/j.issn2095-9389.2020.09.07.003

制備類石墨相氮化碳多孔光催化劑的模板法發展

doi: 10.13374/j.issn2095-9389.2020.09.07.003
基金項目: 國家自然科學基金資助項目(51503014);中央高校基本科研業務費專項資金資助項目(230201818-002A3)
詳細信息
    通訊作者:

    E-mail:chenyingzhi@ustb.edu.cn

  • 中圖分類號: TG142.71

Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride

More Information
  • 摘要: 氮化碳作為一種具有高催化性能的光催化劑,具有無毒無害,自然環境下穩定的性質,在水解制氫氣氧氣以及降解有機污染物領域得到了廣泛的關注. 其中類石墨相氮化碳(g-C3N4)因其特殊的片層結構而具有較高比表面積,常配合孔結構的構造,提供光生載流子及反應物質的運輸通道以及大量活性位點用于氧化還原反應,是具有高光電性能的一種光催化劑.制備該種催化劑孔結構的方法有硬模板法,軟模板法與非模板法,其中硬模板法需要在實驗后除去模板,軟模板法的模板會隨著高溫除去,非模板法的制備過程沒有模板的參與。本文根據近年文獻的整理,著重闡述和比較各制備方法的優劣,結合常用的修飾手段總結各制備方法的變化趨勢和發展方向,并對后續研究中制備方法的使用前景做出判斷.

     

  • 圖  1  C3N4基本單元和能帶結構[2]

    Figure  1.  Basic unit and band structure of C3N4[2]

    圖  2  投射電鏡圖像[23]。(a)bulk-g-C3N4;(b)g-C3N4(SBA-15);(c)g-C3N4(CLBM-SBA-15)

    Figure  2.  TEM images[23]: (a) bulk-g-C3N4; (b) g-C3N4(SBA-15); (c) g-C3N4(CLBM-SBA-15)

    圖  3  投射電鏡圖像[26]。(a)DCS;(b~d)DCS/gCN;(e)OCS;(f~h)OCS/gCN

    Figure  3.  TEM images[26]: (a)DCS; (b?d)DCS/gCN; (e)OCS; (f?h)OCS/gCN

    圖  4  (a)圖解說明由不同前體合成的聚合C3N4形成的示意圖;(b)由不同前體合成的C3N4的X射線衍射圖譜;(c)由不同前體合成的C3N4的N2吸附?解吸等溫線;(d)由不同前體合成的C3N4的UV-Vis吸收光譜;(e)使用由不同前體合成的C3N4降解TC的效率圖;(f)由不同前體合成的C3N4對TC的光降解速率[36]

    Figure  4.  (a) Schematic illustrating the formation of polymeric C3N4 synthesized from different precursors; (b) XRD pattern of C3N4 synthesized from different precursors; (c) nitrogen adsorption?desorption isotherms of C3N4 synthesized from different precursors; (d) UV-Vis absorption spectra of C3N4 synthesized from different precursors; (e) degradation pattern of TC using C3N4 synthesized from different precursors; (f) photodegradation rate of TC using C3N4 synthesized from different precursors [36]

    圖  5  介孔氮化碳形成過程[39]

    Figure  5.  Formation process of mesoporous carbon nitride[39]

    圖  6  (a)g-C3N4;(b)CNF-0.005的掃描電鏡圖像; (c~f)CNF-0.005的透射電鏡和高分辨透射電鏡圖像[39]

    Figure  6.  SEM images of g-C3N4 (a) and CNF-0.005 (b); (c?f) TEM and HRTEM images of CNF-0.005[39]

    圖  7  掃描電鏡圖像[43]。(a)B-C3N4;(b)M-C3N4;(c, d)P-C3N4

    Figure  7.  SEM images[43]: (a) B-C3N4; (b) M-C3N4; and (c, d) P-C3N4

    表  1  不同模板法調控g-C3N4孔結構總括

    Table  1.   Summary of the different template methods in adjusting the pore structure of g-C3N4

    SampleReaction precursor, temperature, time, heating rate, & atmosphereTemplate type& requirementRemoval reagents& requirementSpecific surface
    area/(m2?g?1)
    Pore volume/
    (cm3?g?1)
    Average pore
    size/nm
    Refs.
    Porous-C3N4Dicyandiamide, 500 °C, 4.5 h7?40 nm SiO2 hard template20% HF, 4 h~109~20[20]
    MCN1.0Cyanamide, 550 °C, 4 h, 2 °C?min?1, N212 nm SiO2 nanosphere hard template4.0 mol?L?1
    NH4HF2, 24 h
    ~190.7~0.52~10.9[22]
    CLBM?SBA-15Cyanamide, stirring at room temperature, 1 h, 550 °C, 6 h, air9.5 nm SBA-15 hard template4.0 mol?L?1
    NH4HF2
    ~145~0.43~44[23]
    C3N4?MCFMelamine, 300 °C, 1 h, 600 °C, 2 h, ArMCF hard template15% HF, 12 h~70~0.3[24]
    Bulk-g-C3N4Dicyandiamide, 560 °C, 2 h, N212 nm PSB hard templateNH4HF2~37~0.28~36[25]
    TiO2 trapped g-C3N4Dicyandiamide, 560 °C, 2 h, N212 nm PSB hard templateNH4HF2~63~0.29~20[25]
    OCS/gCNMelamine, 550 °C, 2 h, 2 °C?min?1, air260?320 nm SiO2 nanosphere hard templateHF~105~0.123~260?320[26]
    Meso-g-C3N4/WP/Meso-g-C3N4Cyanamide, 550 °C, 4 h, 3 °C?min?1, N28?15 nm SiO2 hard template0.5 mol?L?1 HF~82~8?15[27]
    CN?MCF-0.4Carbon tetrachloride, ethylenediamine,
    90 °C, 6 h, 600 °C, 5 h, 3 °C?min?1, Ar
    35.7 nm MCF hard template4.0 mol?L?1
    NH4HF2
    ~498~1.36~5.3[29]
    mpg?C3N4-δDicyandiamide, 550 °C, 4 h,
    2.3 °C?min?1, N2
    12 nm SiO2 hard template4.0 mol?L?1
    NH4HF2, 24 h
    ~218.15~0.69~12.57[30]
    PCNCs?ANTaMelamine, 550 °C, 2 h, 2 °C?min?16.7 nm ZnO hard template4.0 mol?L?1 NaOH~32~0.103~16.8[31]
    g-C3N4Melamine, 500 °C, 2 h, airP123 soft template~90[34]
    Bulk-g-C3N4Melamine, 600 °C, 2 h, ArP123 soft template~90~15[34]
    g-C3N4/SnO2Thiourea, SnCl4, 550 °C, 2 h, 10 °C?min?1HCl, H2O soft template~44.32.638~100?430[35]
    C3N4@TiO2Melamine, 400 °C, 2 h, N2, 2 h, airMelamine soft template~44.7~0.11~10.7[37]
    N-RGOGraphene oxide, melamine, 900 °C,
    30 min, 5 °C?min?1
    Ice soft template~190~0.99~20?200[38]
    CNF-0.005Melamine, 550 °C, 4 h, 3 °C?min?1, N2Cyanuric acid-melamine supramolcular aggregates & ionic liquid soft template~381~0.85~15[39]
    PCNMMelamine, urea, 550 °C, 4 h, N2Melamine soft template~78~0.76[40]
    g-C3N4 ultrathin nanosheetMelamine, glutaraldehyde, 800 °C,
    2 h, Ar
    Cyanuric acid soft template~84~3[48]
    g-C3N4 bundlesMelamine, 500 °C, 4 h, N2PEG-PPG-PEG soft template~40.974~100[49]
    g-C3N4 beadsDicyandiamide, 530?600 °C, 2 h, N2PSB soft template~58~0.15~30?90[50]
    P-C3N4Melamine, 550 °C, 4 hFree~40.89~0.2[43]
    2MCN/2UCNMelamine, urea, 550 °C, 1.5 h,
    5 °C?min?1, N2
    Free~41~0.24~23[44]
    5% La/g-CNTMelamine, 550 °C, 2 h, airFree~4~0.0623~2.8[45]
    CN/Fe-1Urea, 600 °C, 4 h, 5 °C?min?1Free~48.19[46]
    g-C3N4 NS/TMCMelamine, 550 °C, 3 h, 2.3 °C?min?1, airFree~57.4[47]
    g-C3N4/Ag3PO4Urea, 550 °C, 4 h, ArFree~20.84~0.083~16[51]
    Brookite/anatase TiO2/g-C3N4Hexadecylamine, 550 °C, 4 h,
    3 °C?min?1, N2
    Free~37~0.2~18[52]
    g-C3N4 nanosheetMelamine, 550 °C, 4 h, 500 °C, 2 h, ArFree~190.1~0.61~5?25[53]
    Fe2O3(6.6)/CNSbThiourea, 535 °C, 3 h, 3 °C?min?1, airFree~33.5~0.195~25[54]
    g-C3N4/MoS2Thiourea, 500 °C, 2 h, 2 °C?min?1Free~45[55]
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Tian H F, Song L M. Recent advances of g-C3N4 visible light photocatalysts. J Tianjin Polytech Univ, 2012, 31(6): 55 doi: 10.3969/j.issn.1671-024X.2012.06.014

    田海鋒, 宋立民. g-C3N4光催化劑研究進展. 天津工業大學學報, 2012, 31(6):55 doi: 10.3969/j.issn.1671-024X.2012.06.014
    [2] He F, Wang Z X, Li Y X, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl Catal B, 2020, 269: 118828 doi: 10.1016/j.apcatb.2020.118828
    [3] Yan Q Y, Zhao C C, Zhang L, et al. Facile two-step synthesis of porous carbon nitride with enhanced photocatalytic activity using a soft template. ACS Sustainable Chem Eng, 2019, 7(4): 3866 doi: 10.1021/acssuschemeng.8b04873
    [4] Babu B, Shim J, Kadam A N, et al. Modification of porous g-C3N4 nanosheets for enhanced photocatalytic activity: In-situ synthesis and optimization of NH4Cl quantity. Catal Commun, 2019, 124: 123 doi: 10.1016/j.catcom.2019.01.009
    [5] Lu J, Wang Y, Huang J F, et al. One-step synthesis of g-C3N4 hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity. Mater Sci Eng B, 2016, 214: 19 doi: 10.1016/j.mseb.2016.08.003
    [6] Han D Y, Liu J, Cai H, et al. High-yield and low-cost method to synthesize large-area porous g-C3N4 nanosheets with improved photocatalytic activity for gaseous nitric oxide and 2-propanol photodegradation. Appl Surf Sci, 2019, 464: 577 doi: 10.1016/j.apsusc.2018.09.108
    [7] Li Y, Zhang D N, Fan J J, et al. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin J Catal, 2021, 42: 627
    [8] Yang Z X, Chu D L, Jia G R, et al. Significantly narrowed bandgap and enhanced charge separation in porous, nitrogen-vacancy red g-C3N4 for visible light photocatalytic H2 production. Appl Surf Sci, 2020, 504: 144407 doi: 10.1016/j.apsusc.2019.144407
    [9] Wu X H, Ma H Q, Zhong W, et al. Porous crystalline g-C3N4: Bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl Catal B, 2020, 271: 118899 doi: 10.1016/j.apcatb.2020.118899
    [10] Chen J Q, Lin W T, Xie L Y, et al. Templated fabrication of graphitic carbon nitride with ordered mesoporous nanostructures for high-efficient photocatalytic bacterial inactivation under visible light irradiation. J Nanomater, 2019, 2019: 3242136
    [11] Chen W, Liu M, Wei S J, et al. Solid-state synthesis of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for excellent enhancement of visible light photoactivity. J Alloys Compd, 2020, 836: 155401 doi: 10.1016/j.jallcom.2020.155401
    [12] Wu M, Yan J M, Zhang X W, et al. Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution. Appl Surf Sci, 2015, 354: 196 doi: 10.1016/j.apsusc.2015.01.132
    [13] Xiao J D, Xie Y B, Li C H, et al. Enhanced hole-dominated photocatalytic activity of doughnut-like porous g-C3N4 driven by down-shifted valance band maximum. Catal Today, 2018, 307: 147 doi: 10.1016/j.cattod.2017.02.024
    [14] Li Y Y, Zhu S L, Liang Y Q, et al. One-step synthesis of Mo and S co-doped porous g-C3N4 nanosheets for efficient visible-light photocatalytic hydrogen evolution. Appl Surf Sci, 2021, 536: 147743
    [15] Zhang M, Xu J, Zong R L, et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Appl Catal B, 2014, 147: 229 doi: 10.1016/j.apcatb.2013.09.002
    [16] He F, Chen G, Zhou Y S, et al. The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance. Chem Commun, 2015, 51(90): 16244 doi: 10.1039/C5CC06713H
    [17] Li X B, Xiong J, Gao X M, et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J Alloys Compd, 2019, 802: 196 doi: 10.1016/j.jallcom.2019.06.185
    [18] Chen D, Yang J, Ding H. Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity. Appl Surf Scie, 2017, 391: 384
    [19] Wang W, Fang J J, Chen H. Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation. J Alloys Compd, 2020, 819: 153064 doi: 10.1016/j.jallcom.2019.153064
    [20] Li Y P, Qu W P, Huang L Y, et al. Porous-C3N4 with high ability for selective adsorption and photodegradation of dyes under visible-light. J Inorg Organomet Polym Mater, 2017, 27(6): 1674 doi: 10.1007/s10904-017-0629-2
    [21] Liu H J, Wu H N, Lü J, et al. SBA-15 templated mesoporous graphitic C3N4 for remarkably enhanced photocatalytic degradation of organic pollutants under visible light. Nano, 2019, 14(11): 1950136 doi: 10.1142/S1793292019501364
    [22] Wang J J, Wang Y, Wang W, et al. Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chem Eng J, 2020, 383: 123193 doi: 10.1016/j.cej.2019.123193
    [23] Zhao H M, Di C M, Wang L, et al. Synthesis of mesoporous graphitic C3N4 using cross-linked bimodal mesoporous SBA-15 as a hard template. Microporous Mesoporous Mater, 2015, 208: 98 doi: 10.1016/j.micromeso.2015.01.047
    [24] Ovcharov M, Shcherban N, Filonenko S, et al. Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2 utilization. Mater Sci Eng B, 2015, 202: 1 doi: 10.1016/j.mseb.2015.08.003
    [25] Wu W B, Li X, Ruan Z H, et al. Fabrication of a TiO2 trapped meso/macroporous g-C3N4 heterojunction photocatalyst and understanding its enhanced photocatalytic activity based on optical simulation analysis. Inorg Chem Front, 2018, 5(2): 481 doi: 10.1039/C7QI00751E
    [26] Baca M, Dworczak M, Aleksandrzak M, et al. Mesoporous carbon/graphitic carbon nitride spheres for photocatalytic H2 evolution under solar light irradiation. Int J Hydrogen Energy, 2020, 45(15): 8618 doi: 10.1016/j.ijhydene.2020.01.105
    [27] Yang Z K, Xing Z P, Feng Q M, et al. Sandwich-like mesoporous graphite-like carbon nitride(Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. J Colloid Interface Sci, 2020, 568: 255 doi: 10.1016/j.jcis.2020.02.060
    [28] Chen Z X, Zheng B Y, Li X X, et al. Progress in the preparation of nanomaterials employing template method. Chem Ind Eng Prog, 2010, 29(1): 94

    陳彰旭, 鄭炳云, 李先學, 等. 模板法制備納米材料研究進展. 化工進展, 2010, 29(1):94
    [29] Xu J, Shen K, Xue B, et al. Synthesis of three-dimensional mesostructured graphitic carbon nitride materials and their application as heterogeneous catalysts for knoevenagel condensation reactions. Catal Lett, 2013, 143(6): 600 doi: 10.1007/s10562-013-0994-6
    [30] Zhang S, Hu C, Ji H H, et al. Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance. Appl Surf Sci, 2019, 478: 304 doi: 10.1016/j.apsusc.2019.01.270
    [31] Tang J, Zhang Q T, Liu Y T, et al. The photocatalytic redox properties of polymeric carbon nitride nanocages(PCNCs) with mesoporous hollow spherical structures prepared by a ZnO-template method. Microporous Mesoporous Mater, 2020, 292: 109639 doi: 10.1016/j.micromeso.2019.109639
    [32] Iqbal W, Wang L Z, Tan X J, et al. One-step in situ green template mediated porous graphitic carbon nitride for efficient visible light photocatalytic activity. J Environ Chem Eng, 2017, 5(4): 3500 doi: 10.1016/j.jece.2017.07.011
    [33] Fei B, Tang Y W, Wang X Y, et al. One-pot synthesis of porous g-C3N4 nanomaterials with different morphologies and their superior photocatalytic performance. Mater Res Bull, 2018, 102: 209 doi: 10.1016/j.materresbull.2018.02.041
    [34] Yan H J. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun, 2012, 48(28): 3430 doi: 10.1039/c2cc00001f
    [35] Chen Y Z, Li W H, Jiang D J, et al. Facile synthesis of bimodal macroporous g-C3N4/SnO2 nanohybrids with enhanced photocatalytic activity. Chin Sci Bull, 2019, 64(1): 44
    [36] Panneri S, Ganguly P, Nair B N, et al. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ Sci Pollut Res, 2017, 24(9): 8609 doi: 10.1007/s11356-017-8538-z
    [37] Li F X, Xiao X D, Zhao C, et al. TiO2-on-C3N4 double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci, 2020, 572: 22 doi: 10.1016/j.jcis.2020.03.071
    [38] Kota M, Yu X, Yeon S H, et al. Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J Power Sources, 2016, 303: 372 doi: 10.1016/j.jpowsour.2015.11.006
    [39] Zhao S, Fang J S, Wang Y Y, et al. Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution. J Colloid Interface Sci, 2020, 561: 601 doi: 10.1016/j.jcis.2019.11.035
    [40] Liang Q H, Li Z, Yu X L, et al. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater, 2015, 27(31): 4634 doi: 10.1002/adma.201502057
    [41] Azimi E B, Badiei A, Sabr M H, et al. A template-free method to synthesize porous G-C3N4 with efficient visible light photodegradation of organic pollutants in water. Adv Powder Technol, 2018, 29(11): 2785 doi: 10.1016/j.apt.2018.07.027
    [42] She X J, Liu L, Ji H Y, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B, 2016, 187: 144 doi: 10.1016/j.apcatb.2015.12.046
    [43] Wang P Y, Guo C S, Hou S, et al. Template-free synthesis of bubble-like phosphorus-doped carbon nitride with enhanced visible-light photocatalytic activity. J Alloys Compd, 2018, 769: 503 doi: 10.1016/j.jallcom.2018.08.034
    [44] Xu Q L, Ma D K, Yang S B, et al. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Appl Surf Sci, 2019, 495: 143555 doi: 10.1016/j.apsusc.2019.143555
    [45] Muhammad A, Tahir M, Al-Shahrani S S, et al. Template free synthesis of graphitic carbon nitride nanotubes mediated by lanthanum (La/g-CNT) for selective photocatalytic CO2 reduction via dry reforming of methane (DRM) to fuels. Appl Surf Sci, 2020, 504: 144177 doi: 10.1016/j.apsusc.2019.144177
    [46] Luo B, Song R, Geng J F, et al. Strengthened spatial charge separation over Z-scheme heterojunction photocatalyst for efficient photocatalytic H2 evolution. Appl Surf Sci, 2019, 475: 453 doi: 10.1016/j.apsusc.2018.12.285
    [47] Elbanna O, Fujitsuka M, Majima T. g-C3N4/TiO2 mesocrystals composite for H2 evolution under visible-light irradiation and its charge carrier dynamics. ACS Appl Mater Interfaces, 2017, 9(40): 34844 doi: 10.1021/acsami.7b08548
    [48] Zhao S, Zhang Y W, Zhou Y M, et al. Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon, 2018, 126: 247 doi: 10.1016/j.carbon.2017.10.033
    [49] Dai X H, Han Z W, Waterhouse G I N, et al. Ordered graphitic carbon nitride tubular bundles with efficient electron-hole separation and enhanced photocatalytic performance for hydrogen generation. Appl Catal A, 2018, 566: 200 doi: 10.1016/j.apcata.2018.09.001
    [50] Li Y D, Jiang Y Q, Ruan Z H, et al. Simulation-guided synthesis of graphitic carbon nitride beads with 3D interconnected and continuous meso/macropore channels for enhanced light absorption and photo-catalytic performance. J Mater Chem A, 2017, 5: 21300 doi: 10.1039/C7TA06626K
    [51] Jiang D L, Zhu J J, Chen M, et al. Highly efficient heterojunction photocatalyst based on nanoporous g-C3N4 sheets modified by Ag3PO4 nanoparticles: Synthesis and enhanced photocatalytic activity. J Colloid Interface Sci, 2014, 417: 115 doi: 10.1016/j.jcis.2013.11.042
    [52] Wei H, McMaster W A, Tan J Z Y, et al. Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J Mater Chem A, 2018, 6(16): 7236 doi: 10.1039/C8TA00386F
    [53] Xu J, Wang Z P, Zhu Y F. Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets. ACS Appl Mater Interfaces, 2017, 9(33): 27727 doi: 10.1021/acsami.7b07657
    [54] Jourshabani M, Shariatinia Z, Badiei A. High efficiency visible-light-driven Fe2O3?xSx/S-doped g-C3N4 heterojunction photocatalysts: Direct Z-scheme mechanism. J Mater Sci Technol, 2018, 34(9): 1511 doi: 10.1016/j.jmst.2017.12.020
    [55] Qi Y R, Liang Q H, Lü R T, et al. Synthesis and photocatalytic activity of mesoporous g-C3N4/MoS2 hybrid catalysts. R Soc Open Sci, 2018, 5(5): 180187 doi: 10.1098/rsos.180187
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1229
  • HTML全文瀏覽量:  761
  • PDF下載量:  88
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-07
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回