<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

單軸應力下煙煤氧化?自燃災變溫度

徐永亮 劉澤健 步允川 陳蒙磊 呂志廣 王蘭云

徐永亮, 劉澤健, 步允川, 陳蒙磊, 呂志廣, 王蘭云. 單軸應力下煙煤氧化?自燃災變溫度[J]. 工程科學學報, 2021, 43(10): 1312-1322. doi: 10.13374/j.issn2095-9389.2020.09.02.004
引用本文: 徐永亮, 劉澤健, 步允川, 陳蒙磊, 呂志廣, 王蘭云. 單軸應力下煙煤氧化?自燃災變溫度[J]. 工程科學學報, 2021, 43(10): 1312-1322. doi: 10.13374/j.issn2095-9389.2020.09.02.004
XU Yong-liang, LIU Ze-jian, BU Yun-chuan, CHEN Meng-lei, Lü Zhi-guang, WANG Lan-yun. Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress[J]. Chinese Journal of Engineering, 2021, 43(10): 1312-1322. doi: 10.13374/j.issn2095-9389.2020.09.02.004
Citation: XU Yong-liang, LIU Ze-jian, BU Yun-chuan, CHEN Meng-lei, Lü Zhi-guang, WANG Lan-yun. Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress[J]. Chinese Journal of Engineering, 2021, 43(10): 1312-1322. doi: 10.13374/j.issn2095-9389.2020.09.02.004

單軸應力下煙煤氧化?自燃災變溫度

doi: 10.13374/j.issn2095-9389.2020.09.02.004
基金項目: 國家自然科學基金資助項目(52074108,51874124);中國博士后科學基金資助項目(2017M612397,2018T110725)
詳細信息
    通訊作者:

    E-mail:wlyhpu@163.com

  • 中圖分類號: TD75

Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress

More Information
  • 摘要: 為探究不同埋藏深度裂隙煤體氧化?自燃過程在單軸應力作用下的影響規律,本文通過荷載加壓煤自燃特性實驗平臺,采用新疆硫磺溝礦區煙煤煤樣,開展了施加單軸應力在0~8 MPa下的貧氧環境程序升溫試驗。根據加壓試驗中煙煤產生氣體隨溫度的變化關系,計算了煙煤在單軸應力下升溫過程表觀活化能和耗氧速率。結合煤自燃氧化動力學和熱解參數,闡述了單軸應力下煤體由緩慢氧化到快速氧化的非線性發展過程,并基于突變理論解算出試驗條件下煙煤氧化?燃燒過程的突變溫度和臨界溫度,確定出4個特征參數:突變溫度$ {T}_{\mathrm{C}\mathrm{O}} $(CO表征)和$ {T}_{\mathrm{H}\mathrm{Y}} $(耗氧速率表征),臨界溫度$ {T}_{\mathrm{C}\mathrm{O}}^{'} $(CO表征)和$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $(耗氧速率表征),并分析了不同特征參數隨單軸應力的變化規律。結果表明:熱解氣體濃度、表觀活化能和耗氧速率隨單軸應力增大呈先增大后減小再增大的三次函數規律(其中1.8和5.5 MPa時為臨界軸壓),1.8 MPa時表觀活化能和各項特征參數數值最低,煤氧反應速率最快,耗氧速率最高;單軸應力為5.5 MPa時耗氧速率最大,煤體新生裂隙最多;單軸應力對$ {T}_{\mathrm{C}\mathrm{O}} $特征參數影響最大,煤自燃緩慢過渡到快速氧化的溫度指標,由CO濃度表征的突變溫度$ {T}_{\mathrm{C}\mathrm{O}} $表征最為準確。該研究結果對于礦井不同埋深煤自燃預警和防控具有重要理論指導意義。

     

  • 圖  1  程序升溫CO體積分數隨溫度關系變化曲線

    Figure  1.  Changes in CO volume fraction with increases in temperature in temperature-programmed experiments

    圖  2  程序升溫C2H4濃度隨溫度關系變化曲線

    Figure  2.  Changes in C2H4 volume fraction with increases in temperature in temperature-programmed experiments

    圖  3  煤樣在不同應力下的表觀活化能

    Figure  3.  Apparent activation energy of coal samples under different levels of stress

    圖  4  耗氧速率隨溫度變化曲線

    Figure  4.  Oxygen consumption rate curves with temperature

    圖  5  煤自燃進程突變模型示意圖

    Figure  5.  Schematic diagram of the catastrophe model for coal combustion process

    圖  6  軸壓4 MPa時ln$ {k}_{1}$(a)和ln$ {k}_{2}$(b)與(?1/T)關系圖

    Figure  6.  Diagram of relationship of ln$ {k}_{1} $ (a) and ln$ {k}_{2} $ (b) with (?1/T) under axial pressure of 4 MPa

    圖  7  突變溫度(a)和臨界溫度(b)隨單軸應力的變化

    Figure  7.  Changes in catastrophic temperature (a) and critical temperature (b) with uniaxial stress

    表  1  實驗煤樣的工業分析與元素分析(質量分數)

    Table  1.   Proximate and ultimate analyses for the experimental coal %

    Proximate analysisUltimate analysis
    MadAadVdafFCadCdafHdafNdaf
    6.4315.7141.5136.3570.865.440.69
    下載: 導出CSV

    表  2  不同單軸應力下煤的孔隙率

    Table  2.   Porosity of coal under different levels of uniaxial stress

    0 MPa2 MPa4 MPa6 MPa8 MPa
    0.4760.4470.4000.3920.350
    下載: 導出CSV

    表  3  不同單軸應力下的突變溫度

    Table  3.   Catastrophic temperature under different levels of uniaxial stress

    Uniaxial stresses /MPaTCO/℃THY/℃
    083.399.1
    292.1121.0
    490.0117.3
    685.192.0
    8131.1137.0
    下載: 導出CSV

    表  4  不同單軸應力下煤樣臨界溫度

    Table  4.   Critical temperature of coal sample under different levels of uniaxial stresses

    Uniaxial stresses /MPa$ {T}_{\mathrm{C}\mathrm{O}}^{'} $/℃$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $/℃
    070.060.0
    290.070.0
    480.070.0
    670.060.0
    8128.2128.2
    下載: 導出CSV

    表  5  單軸應力與特征參數的灰色關聯度

    Table  5.   Grey relational grades of characteristic and axial compression parameters

    Uniaxial stresses /MPa$ {T}_{\mathrm{C}\mathrm{O}} $$ {T}_{\mathrm{H}\mathrm{Y}} $$ {T}_{\mathrm{C}\mathrm{O}}^{'} $$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $Average value
    20.860.670.770.540.71
    40.810.840.830.590.77
    60.770.600.660.520.64
    80.950.890.790.620.82
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xu Y H, Xu M G, Xu J C. Discussion on several problems in indication gas prediction of coal spontaneous combustion. Min Saf Environ Prot, 2005, 32(1): 16 doi: 10.3969/j.issn.1008-4495.2005.01.007

    許延輝, 許滿貴, 徐精彩. 煤自燃火災指標氣體預測預報的幾個關鍵問題探討. 礦業安全與環保, 2005, 32(1):16 doi: 10.3969/j.issn.1008-4495.2005.01.007
    [2] Zhao H G, Zhang D M, Liu C, et al. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions. Chin J Eng, 2016, 38(12): 1674

    趙宏剛, 張東明, 劉超, 等. 加卸載下原煤力學特性及滲透演化規律. 工程科學學報, 2016, 38(12):1674
    [3] Lou Q, He X Q, Song D Z, et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform. Chin J Eng, 2019, 41(7): 874

    婁全, 何學秋, 宋大釗, 等. 基于全波形的煤樣單軸壓縮破壞聲電時頻特征. 工程科學學報, 2019, 41(7):874
    [4] Yu Y J, Zhang H, Zhang C H, et al. Effects of temperature and stress on permeability of standard coal briquette specimen. J China Coal Soc, 2013, 38(6): 936

    于永江, 張華, 張春會, 等. 溫度及應力對成型煤樣滲透性的影響. 煤炭學報, 2013, 38(6):936
    [5] Zhang Z P, Gao M Z, Zhang Z T, et al. Research on permeability characteristics of raw coal in complete stress-strain process under different gas pressure. J China Coal Soc, 2015, 40(4): 836

    張朝鵬, 高明忠, 張澤天, 等. 不同瓦斯壓力原煤全應力應變過程中滲透特性研究. 煤炭學報, 2015, 40(4):836
    [6] Zhou F B, Shao H, Li J H, et al. Experimental research on combustion product formation during coal spontaneous combustion under reduced oxygen concentrations. J China Univ Min Technol, 2010, 39(6): 808

    周福寶, 邵和, 李金海, 等. 低O2含量條件下煤自燃產物生成規律的實驗研究. 中國礦業大學學報, 2010, 39(6):808
    [7] Wen H, Zhao X T, Wang W F, et al. Analysis on characteristics of indicator gases of spontaneous combustion of different coals. Coal Convers, 2020, 43(1): 16

    文虎, 趙向濤, 王偉峰, 等. 不同煤體自燃指標性氣體函數模型特征分析. 煤炭轉化, 2020, 43(1):16
    [8] Zhu J G, Dai G L, Tang M Y, et al. Experimental study on spontaneous combustion prediction index gas of water immersed long flame coal. Coal Sci Technol, 2020, 48(5): 89

    朱建國, 戴廣龍, 唐明云, 等. 水浸長焰煤自燃預測預報指標氣體試驗研究. 煤炭科學技術, 2020, 48(5):89
    [9] Tang H, Guo J, Liu Y, et al. Experimental study on index optimization of coal spontaneous combustion prediction under high temperature. Saf Coal Mines, 2018, 49(6): 11

    唐洪, 郭軍, 劉蔭, 等. 高地溫條件下的煤自燃預報指標優選實驗研究. 煤礦安全, 2018, 49(6):11
    [10] Zhong X X, Wang D M, Yin X D. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment. J China Coal Soc, 2010, 35(Suppl 1): 128

    仲曉星, 王德明, 尹曉丹. 基于程序升溫的煤自燃臨界溫度測試方法. 煤炭學報, 2010, 35(增刊1): 128
    [11] Kondratiev A, Ilyushechkin A. Flow behaviour of crystallising coal ash slags: Shear viscosity, non-Newtonian flow and temperature of critical viscosity. Fuel, 2018, 224: 783 doi: 10.1016/j.fuel.2018.03.031
    [12] Gbadamosi A R, Onifade M, Genc B, et al. Analysis of spontaneous combustion liability indices and coal recording standards/basis. Int J Min Sci Technol, 2020, 30(5): 723 doi: 10.1016/j.ijmst.2020.03.016
    [13] Jiao X M, Wang D M, Zhong X X, et al. The analysis of influencing factors on coal spontaneous combustion calculate critical temperature based on CO concentration. Saf Coal Mines, 2012, 43(3): 11

    焦新明, 王德明, 仲曉星, 等. 基于CO濃度求解煤自燃臨界溫度的影響因素分析. 煤礦安全, 2012, 43(3):11
    [14] Zhang H M. Experimental on gaseous seepage properties of sandstone in complete stress-strain process. J China Coal Soc, 2009, 34(8): 1063 doi: 10.3321/j.issn:0253-9993.2009.08.011

    張宏敏. 砂巖全應力?應變過程氣體滲透特性實驗. 煤炭學報, 2009, 34(8):1063 doi: 10.3321/j.issn:0253-9993.2009.08.011
    [15] Xu Y L, Zuo N, Liang P P, et al. Study on influence of uniaxial stress on spontaneous combustion characteristic parameters and thermal conductivity of coal. J Saf Sci Technol, 2018, 14(4): 32

    徐永亮, 左寧, 梁浦浦, 等. 單軸應力對煤自燃特性參數和導熱系數的影響研究. 中國安全生產科學技術, 2018, 14(4):32
    [16] Song Z Y. Thermogravimetric and Numerical Investigations on Couplings of Chemical Reaction, Hydraulic Field and Thermal Field of Coal Fires [Dissertation]. Beijing: China University of Mining and Technology, 2015

    宋澤陽. 煤火氧化燃燒反應-流場-溫度場耦合TGA實驗與數值模擬 [學位論文]. 北京: 中國礦業大學(北京), 2015
    [17] Xu Y L, Wang L Y, Song Z P, et al. Characteristics and critical parameters of coal spontaneous combustion at low temperature stage based on CPT method. J China Coal Soc, 2017, 42(4): 935

    徐永亮, 王蘭云, 宋志鵬, 等. 基于交叉點法的煤自燃低溫氧化階段特性和關鍵參數. 煤炭學報, 2017, 42(4):935
    [18] Li Z H, Qi F, Du C S, et al. Measurement of dynamic parameters of coal oxidation at low temperature based on oxygen consumption. J Min Saf Eng, 2007, 24(2): 137 doi: 10.3969/j.issn.1673-3363.2007.02.003

    李增華, 齊峰, 杜長勝, 等. 基于吸氧量的煤低溫氧化動力學參數測定. 采礦與安全工程學報, 2007, 24(2):137 doi: 10.3969/j.issn.1673-3363.2007.02.003
    [19] Kudynska J, Buckmaster H A. Low-temperature oxidation kinetics of high-volatile bituminous coal studied by dynamic in situ 9 GHz c.w.e.p.r. spectroscopy. Fuel, 1996, 75(7): 872 doi: 10.1016/0016-2361(96)00014-2
    [20] Copard Y, Disna J R, Becq-Giraudon J F, et al. Erroneous coal maturity assessment caused by low temperature oxidation. Int J Coal Geol, 2004, 58(3): 171 doi: 10.1016/j.coal.2003.10.007
    [21] Zhu H Q, Wang H Y, Shen J. et al. Experiment study on oxygen concentration affected to oxygen consumption rate of loose coal. Coal Eng, 2013, 45(8): 110

    朱紅青, 王海燕, 沈靜, 等. 氧濃度對松散煤耗氧速率影響的實驗研究. 煤炭工程, 2013, 45(8):110
    [22] Onifade M, Genc B. A review of research on spontaneous combustion of coal. Int J Min Sci Technol, 2020, 30(3): 303 doi: 10.1016/j.ijmst.2020.03.001
    [23] Liu W, Qin Y P, Qiao T, et al. Experimental demonstration on calculation of oxygen consumption rate and CO generation rate in coal spomtaneous combustion. J China Univ Min Technol, 2016, 45(6): 1141

    劉偉, 秦躍平, 喬珽, 等. 煤耗氧速率與CO生成速率的計算及實驗論證. 中國礦業大學學報, 2016, 45(6):1141
    [24] Wang D M, Xin H H, Qi X Y, et al. Mechanism and relationships of elementary reactions in spontaneous combustion of coal: The coal oxidation kinetics theory and application. J China Coal Soc, 2014, 39(8): 1667

    王德明, 辛海會, 戚緒堯, 等. 煤自燃中的各種基元反應及相互關系: 煤氧化動力學理論及應用. 煤炭學報, 2014, 39(8):1667
    [25] Guo D Y, Li J N, Wang Y K, et al. Early-warning model of coal and gas outburst based on the stick-slip and catastrophe theory. J Univ Sci Technol Beijing, 2013, 35(11): 1407

    郭德勇, 李佳乃, 王彥凱, 等. 基于黏滑失穩與突變理論的煤與瓦斯突出預警模型. 北京科技大學學報, 2013, 35(11):1407
    [26] Zhang Y T, Li Y Q, Deng J, et al. Study on catastrophe characteristics of coal spontaneous combustion. China Saf Sci J, 2015, 25(1): 78

    張玉濤, 李亞清, 鄧軍, 等. 煤炭自燃災變過程突變特性研究. 中國安全科學學報, 2015, 25(1):78
    [27] Zhang H Y, Geng Z. Novel interpretation for Levenberg-Marquardt algorithm. Comput Eng Appl, 2009, 45(19): 5 doi: 10.3778/j.issn.1002-8331.2009.19.002

    張鴻燕, 耿征. Levenberg-Marquardt算法的一種新解釋. 計算機工程與應用, 2009, 45(19):5 doi: 10.3778/j.issn.1002-8331.2009.19.002
    [28] Sun G D, Guan X, Yi X, et al. Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition. Expert Syst Appl, 2018, 92: 521 doi: 10.1016/j.eswa.2017.09.048
  • 加載中
圖(7) / 表(5)
計量
  • 文章訪問數:  775
  • HTML全文瀏覽量:  553
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-02
  • 網絡出版日期:  2021-04-22
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回