<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈦/鋼復合板及其制備應用研究現狀與發展趨勢

白于良 劉雪峰 王文靜 楊耀華

白于良, 劉雪峰, 王文靜, 楊耀華. 鈦/鋼復合板及其制備應用研究現狀與發展趨勢[J]. 工程科學學報, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007
引用本文: 白于良, 劉雪峰, 王文靜, 楊耀華. 鈦/鋼復合板及其制備應用研究現狀與發展趨勢[J]. 工程科學學報, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007
BAI Yu-liang, LIU Xue-feng, WANG Wen-jing, YANG Yao-hua. Current status and research trends in processing and application of titanium/steel composite plate[J]. Chinese Journal of Engineering, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007
Citation: BAI Yu-liang, LIU Xue-feng, WANG Wen-jing, YANG Yao-hua. Current status and research trends in processing and application of titanium/steel composite plate[J]. Chinese Journal of Engineering, 2021, 43(1): 85-96. doi: 10.13374/j.issn2095-9389.2020.08.31.007

鈦/鋼復合板及其制備應用研究現狀與發展趨勢

doi: 10.13374/j.issn2095-9389.2020.08.31.007
基金項目: 國家重點研發計劃資助項目(2018YFA0707300)
詳細信息
    通訊作者:

    E-mail:liuxuefengbj@163.com

  • 中圖分類號: TG335.81

Current status and research trends in processing and application of titanium/steel composite plate

More Information
  • 摘要: 隨著鈦/鋼復合板的應用領域不斷拓展,市場對鈦/鋼復合板的尺寸和性能都提出了新的要求,現有的制備方法和工藝也面臨著巨大挑戰。本文從原材料情況、復合板尺寸、界面特征和力學性能等方面概述了鈦/鋼復合板研究現狀,評述了鈦/鋼復合板目前的主要制備方法及其優缺點,綜述了表面處理方法、熱軋溫度、過渡層金屬和熱處理工藝對鈦/鋼復合板界面結合質量的影響,闡述了鈦/鋼復合板的應用現狀,指出了鈦/鋼復合板面臨的主要問題及未來的重點研究方向。

     

  • 圖  1  爆炸復合法裝配示意圖[40]

    Figure  1.  Assembly diagram of explosive composite method[40]

    圖  2  小孔抽真空組坯示意圖[59]

    Figure  2.  Schematic of small hole vacuum assembling[59]

    圖  3  真空電子束焊接組坯熱軋復合過程示意圖[21]

    Figure  3.  Schematic of vacuum electron beam welding and hot rolling bonding process[21]

    圖  4  不同熱軋復合制備的鈦/鋼復合板的界面形貌及高倍形貌[25]。(a,e)850 ℃;(b,f)900 ℃;(c,g)950 ℃;(d,h)1000 ℃

    Figure  4.  Interface morphology of titanium/steel composite plate prepared at different hot rolling temperatures[25]: (a,e) 850 ℃; (b,f) 900 ℃; (c,g) 950 ℃; (d,h) 1000 ℃

    表  1  鈦和鋼的物理性能[2]

    Table  1.   Physical properties of titanium and steel[2]

    MaterialDensity/
    (g·cm?3)
    Melting
    point/℃
    Thermal conductivity/
    (W·m?1·K?1)
    Thermal expansion coefficient/
    (10?6·K?1)
    Specific heat/
    (J·kg?1·K?1)
    Ti4.5167713.88.2539
    Fe7.8153766.711.8482
    下載: 導出CSV

    表  2  鈦/鋼界面各相的晶體學信息

    Table  2.   Crystallographic information of phases in titanium/steel interface

    PhaseCrystal systemSpace grouplattice constant
    α-FeBCCIm-3ma = 0.2866 nm
    α-TiHCPP63/mmca = b = 0.2951 nm,
    c = 0.4683 nm
    β-TiBCCIm-3ma = 0.3306 nm
    TiCFCCFm-3ma = 0.4327 nm
    Fe2TiHCPP63/mmca = b = 0.4785 nm,
    c = 0.7799 nm
    FeTiBCCPm-3ma = 0.2976 nm
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Duan H J. Application of titanium/steel composite plate in evaporation chamber of vacuum salt making plant. Tit Ind Prog, 1993(1): 19

    段恒杰. 鈦鋼復合板在真空制鹽裝置蒸發室的應用. 鈦工業進展, 1993(1):19
    [2] Chai X Y. Study on Rolling Process, Microstructure and Properties of Titanium Clad Steel for Ship and Ocean Engineering [Dissertation]. Beijing: Tsinghua University, 2018

    柴希陽. 船舶與海洋工程用鈦/鋼復合板軋制工藝與組織性能研究[學位論文]. 北京: 清華大學, 2018
    [3] Gao B L, Li P C, Hua X F, et al. Ti?steel clad plate application in steam condenser of seashore station. Tit Ind Prog, 2005, 22(4): 36 doi: 10.3969/j.issn.1009-9964.2005.04.010

    高寶利, 李平倉, 華先鋒, 等. 鈦?鋼復合板在濱海電站凝汽器中的應用. 鈦工業進展, 2005, 22(4):36 doi: 10.3969/j.issn.1009-9964.2005.04.010
    [4] Yan L. Behaviotsard applications of Ti/steel composite sheets. China Tit Ind, 2011(3): 12

    閆力. 鈦鋼復合板的特點及應用領域. 中國鈦業, 2011(3):12
    [5] Hu J, Xie R, Du X B. Processing technology of titanium steel clad plate and its application in ship and ocean engineering. Jiangsu Ship, 2016, 33(6): 6 doi: 10.3969/j.issn.1001-5388.2016.06.002

    胡杰, 謝榮, 杜訓柏. 鈦鋼復合板加工技術及其在船海工程中的應用. 江蘇船舶, 2016, 33(6):6 doi: 10.3969/j.issn.1001-5388.2016.06.002
    [6] Lee M K, Lee J G, Choi Y H, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett, 2010, 64(9): 1105
    [7] Chai X Y, Pan T, Chai F, et al. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel Res Int, 2018, 25(7): 739
    [8] Zhao D S, Yan J C, Wang C W, et al. Interfacial structure and mechanical properties of hot roll bonded joints between titanium alloy and stainless steel using copper interlayer. Sci Technol Weld Join, 2008, 13(8): 765
    [9] Sam S, Kundu S, Chatterjee S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties. Mater Des, 2012, 40: 237
    [10] Atasoy E, Kahraman N. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact, 2008, 59(10): 1481
    [11] Deng Y Q, Sheng G M, Xu C. Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater Des, 2013, 46: 84
    [12] Wang J Y, Ge Z M, Zhou Y B. Aeronautical Titanium Alloy. Shanghai: Shanghai Scientific & Technical Publishers, 1985

    王金友, 葛志明, 周彥邦. 航空用鈦合金. 上海: 上海科學技術出版社, 1985
    [13] Wang H L. Application status and development of titanium and titanium alloy in shipbuilding industry. Spec Steel Technol, 2013, 19(4): 1 doi: 10.3969/j.issn.1674-0971.2013.04.001

    王懷柳. 鈦及鈦合金在船舶工業的應用現狀及發展. 特鋼技術, 2013, 19(4):1 doi: 10.3969/j.issn.1674-0971.2013.04.001
    [14] Xing S Y, Wang S H. Aluminum and Titanium Alloys. Beijing: China Machine Press, 1987

    邢淑儀, 王世洪. 鋁合金和鈦合金. 北京: 機械工業出版社, 1987
    [15] Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti?6Al?4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum, 2017, 145: 68
    [16] Kundu S, Chatterjee S. Effect of bonding temperature on interface microstructure and properties of titanium-304 stainless steel diffusion bonded joints with Ni interlayer. Mater Sci Technol, 2006, 22(10): 1201
    [17] Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate. J Mater Eng Perform, 2018, 27(4): 1664
    [18] Xie M X, Zhang L J, Zhang G F, et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des, 2015, 87: 181
    [19] Zhao D S, Yan J C, Wang Y, et al. Relative slipping of interface of titanium alloy to stainless steel during vacuum hot roll bonding. Mater Sci Eng A, 2009, 499(1-2): 282
    [20] Liu R S, Ren L B, Wang H C, er al. Study on explosive-rolling process of large-scale titanium/steel plate with thin cladding. Rare Met Lett, 2005, 24(1): 18

    劉潤生, 任連寶, 汪漢臣, 等. 大面積、薄覆層鈦/鋼復合板爆炸?軋制工藝研究. 稀有金屬快報, 2005, 24(1):18
    [21] Luo Z A, Yang D H, Xie G M, et al. Production process and performance of titanium-steel vacuum roll-cladding plates. J Iron Steel Res, 2019, 31(2): 213

    駱宗安, 楊德翰, 謝廣明, 等. 真空制坯熱軋鈦/鋼復合板工藝及性能. 鋼鐵研究學報, 2019, 31(2):213
    [22] Huang J C. NKK develops titanium steel rolling clad plate. Rare Met Lett, 2002(6): 3

    黃金昌. NKK開發鈦鋼軋制復合板. 稀有金屬快報, 2002(6):3
    [23] Jiang S Y, Li S C. Analysis on valence electron structures and properties of intermetallic compounds in Ti?Fe system. Rare Met Mater Eng, 2011, 40(1): 36

    蔣淑英, 李世春. Ti?Fe系金屬間化合物價電子結構與性能分析. 稀有金屬材料與工程, 2011, 40(1):36
    [24] Rajabi A, Ghazali M J, Daud A R. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet: A review. Mater Des, 2015, 67: 95
    [25] Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding. Rare Met Mater Eng, 2019, 48(8): 2701

    柴希陽, 師仲然, 柴鋒, 等. 加熱溫度對軋制鈦/鋼復合板組織與性能的影響. 稀有金屬材料與工程, 2019, 48(8):2701
    [26] Jiang H T, Yan X Q, Liu J X, et al. Effect of heat treatment on microstructure and mechanical property of Ti-steel explosive-rolling clad plate. Trans Nonferrous Met Soc China, 2014, 24(3): 697
    [27] Yang D H, Luo Z A, Xie G M, et al. Influence of surface treatment on interface bonding properties of titanium/steel composite plate. J Northeast Univ Nat Sci, 2018, 39(10): 1396

    楊德翰, 駱宗安, 謝廣明, 等. 表面處理方式對鈦/鋼復合板界面結合性能的影響. 東北大學學報(自然科學版), 2018, 39(10):1396
    [28] Yang D H, Luo Z A, Xie G M, et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates. J Iron Steel Res Int, 2018, 25(1): 72
    [29] Ghosh M, Das S, Banarjee P S, et al. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple. Mater Sci Eng A, 2005, 390(1-2): 217
    [30] Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater Sci Eng A, 2008, 480(1-2): 316
    [31] Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer. Mater Sci Eng A, 2017, 695: 120
    [32] Song J, Kostka A, Veehmayer M, et al. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Mater Sci Eng A, 2011, 528(6): 2641
    [33] Liu J X, Zhao A M, Jiang H T, et al. Effect of interface morphology on the mechanical properties of titanium clad steel plates. Int J Miner Metall Mater, 2012, 19(5): 404
    [34] Xie M X, Shang X T, Zhang L J, et al. Interface characteristic of explosive-welded and hot-rolled TA1/X65 bimetallic plate. Metals, 2018, 8(3): 159
    [35] Liu J G, Cai W C, Liu L, et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process. Mater Sci Eng A, 2017, 703: 386
    [36] Mudali U K, Rao B M A, Shanmugam K, et al. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel. J Nucl Mater, 2003, 321(1): 40
    [37] Wang J Z, Yan X B, Wang W Q, et al. Summarization of the rolling Ti?steel composite plates process. Mater Rev, 2005, 19(4): 61 doi: 10.3321/j.issn:1005-023X.2005.04.017

    王敬忠, 顏學柏, 王韋琪, 等. 軋制鈦?鋼復合板工藝綜述. 材料導報, 2005, 19(4):61 doi: 10.3321/j.issn:1005-023X.2005.04.017
    [38] Wang J Z, Yan X B, Wang W Q, et al. Titanium cladding steel plates with interlayer by explosion and rolling bonding. Rare Met Mater Eng, 2010, 39(2): 309

    王敬忠, 顏學柏, 王韋琪, 等. 帶夾層材料的爆炸?軋制鈦鋼復合板工藝研究. 稀有金屬材料與工程, 2010, 39(2):309
    [39] Ha J S, Hong S I. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Mater Sci Eng A, 2016, 651: 805
    [40] Zu G Y. Theories and Technologies of Preparation Layered Metal Composite. Shenyang: Northeastern University Press, 2013

    祖國胤. 層狀金屬復合材料制備理論與技術. 沈陽: 東北大學出版社, 2013
    [41] Prasanthi T N, Ravikirana C S, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Des, 2016, 93: 180
    [42] Zu G Y, Sun X, Zhang J H. Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing. Rare Met Mater Eng, 2017, 46(4): 906
    [43] Manikandan P, Hokamoto K, Deribas A A, et al. Explosive welding of titanium/stainless steel by controlling energetic conditions. Mater Trans, 2006, 47(8): 2049
    [44] Mousavi S A A A, Sartangi P F. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Des, 2009, 30(3): 459
    [45] Manikandan P, Hokamoto K, Fujita M, et al. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. J Mater Process Technol, 2008, 195(1-3): 232
    [46] Findik F. Recent developments in explosive welding. Mater Des, 2011, 32(3): 1081
    [47] Jiang H T, Yan X Q, Liu J X, et al. Diffusion behavior and mathematical model of Ti?steel explosive clad plate during heat treatment. Rare Met Mater Eng, 2015, 44(4): 972

    江海濤, 閻曉倩, 劉繼雄, 等. 鈦?鋼爆炸復合板熱處理過程中的擴散行為及數學模型. 稀有金屬材料與工程, 2015, 44(4):972
    [48] Rao N V, Sarma D S, Nagarjuna S, et al. Influence of hot rolling and heat treatment on structure and properties of HSLA steel explosively clad with austenitic stainless steel. Mater Sci Technol, 2009, 25(11): 1387
    [49] Jiang H T, Yan X Q, Liu J X, et al. Influence of asymmetric rolling parameters on the microstructure and mechanical properties of titanium explosive clad plate. Rare Met Mater Eng, 2014, 43(11): 2631
    [50] Orhan N, Khan T I, Ero?lu M. Diffusion bonding of a microduplex stainless steel to Ti–6Al–4V. Scripta Mater, 2001, 45(4): 441
    [51] Ghosh M, Chatterjee S. Characterization of transition joints of commercially pure titanium to 304 stainless steel. Mater Charact, 2002, 48(5): 393
    [52] Ghosh M, Chatterjee S. Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater Sci Eng A, 2003, 358(1-2): 152
    [53] Kundu S, Ghosh M, Laik A, et al. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater Sci Eng A, 2005, 407(1-2): 154
    [54] Eroglu M, Khan T I, Orhan N. Diffusion bonding between Ti?6Al?4V alloy and microduplex stainless steel with copper interlayer. Mater Sci Technol, 2002, 18(1): 68
    [55] Kundu S, Chatterjee S. Interfacial microstructure and mechanical properties of diffusion-bonded titanium–stainless steel joints using a nickel interlayer. Mater Sci Eng A, 2006, 425(1-2): 107
    [56] He P, Yue X, Zhang J H. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater Sci Eng A, 2008, 486(1-2): 171
    [57] Kundu S, Chatterjee S. Evolution of interface microstructure and mechanical properties of titanium/304 stainless steel diffusion bonded joint using Nb interlayer. ISIJ Int, 2010, 50(10): 1460
    [58] Kundu S, Sam S, Mishra B, et al. Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A, 2014, 45(1): 371
    [59] Yu C, Wu Z H, Guo Z X, et al. Microstructure and properties of hot-rolled bonded titanium clade steel plate. Iron Steel, 2018, 53(4): 42

    余超, 吳宗河, 郭子楦, 等. 熱軋鈦/鋼復合板顯微組織和性能. 鋼鐵, 2018, 53(4):42
    [60] Wang C Y, Jiang Y B, Xie J X, et al. Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum-steel composite sheet produced by cold roll bonding process. Mater Sci Eng A, 2016, 652: 51
    [61] Tang C, Liu Z, Zhou D, et al. Surface treatment with the cold roll bonding process for an aluminum alloy and mild steel. Strength Mater, 2015, 47(1): 150
    [62] Liu X F, Bai Y L, Li J K, et al. Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composites plates. J Mater Eng, 2020, 48(7): 119

    劉雪峰, 白于良, 李晶琨, 等. 冷軋成形鈦/鋼層狀復合板界面結合強度的影響因素. 材料工程, 2020, 48(7):119
    [63] Qin B, Sheng G M, Huang J W, et al. Phase transformation diffusion bonding of titanium alloy with stainless steel. Mater Charact, 2006, 56(1): 32
    [64] Kundu S, Ghosh M, Chatterjee S. Diffusion bonding of commercially pure titanium and 17-4 precipitation hardening stainless steel. Mater Sci Eng A, 2006, 428(1-2): 18
    [65] Li B X, Chen Z J, He W J, et al. Effect of interlayer material and rolling temperature on microstructures and mechanical properties of titanium/steel clad plates. Mater Sci Eng A, 2019, 749: 241
    [66] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall Sin-Engl Lett, 2013, 26(6): 754
    [67] Zhao D S, Yan J C, Liu Y J, et al. Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer. Trans Nonferrous Met Soc China, 2014, 24(9): 2839
    [68] Yan J C, Zhao D S, Wang C W, et al. Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. Mater Sci Technol, 2009, 25(7): 914
    [69] Rahman A H M E, Cavalli M N. Strength and microstructure of diffusion bonded titanium using silver and copper interlayers. Mater Sci Eng A, 2010, 527(20): 5189
    [70] Chen Z J, Zhou T, Li B X, et al. Interfacial structure and mechanical properties of titanium clad steel plates with vanadium interlayer. J Plast Eng, 2019, 26(1): 188

    陳澤軍, 周廷, 李博新, 等. 釩中間層鈦/鋼復合板結合界面結構與力學性能. 塑性工程學報, 2019, 26(1):188
    [71] Yang D H, Luo Z A, Xie G M, et al. Interfacial microstructure and properties of a vacuum roll-cladding titanium-steel clad plate with a nickel interlayer. Mater Sci Eng A, 2019, 753: 49
    [72] Song P L, Ye J L, Zhang C. Quality control technology in manufacturing process of large titanium steel clad plate equipment. J Sichuan Military Technol, 2012, 33(11): 80

    宋品玲, 葉建林, 張成. 大型鈦鋼復合板設備制造過程中的質量控制技術. 四川兵工學報, 2012, 33(11):80
    [73] Zhang X F. Cause analysis of leakage occurred in large titanium clad steel column and onsite repairing measures. Process Equip Pip, 2016, 53(5): 15 doi: 10.3969/j.issn.1009-3281.2016.05.005

    張秀鋒. 大型鈦鋼復合板塔器泄漏原因分析及現場返修措施. 化工設備與管道, 2016, 53(5):15 doi: 10.3969/j.issn.1009-3281.2016.05.005
    [74] Ouyang C. Discussion on the design of pressure acid leaching titanium steel composite board reactor for hydrometallurgy. China Nonferrous Metall, 2019(5): 65 doi: 10.3969/j.issn.1672-6103.2019.05.017

    歐陽燦. 濕法冶金加壓酸浸鈦鋼復合板反應釜設計探討. 中國有色冶金, 2019(5):65 doi: 10.3969/j.issn.1672-6103.2019.05.017
    [75] Zhang C, Sun W C. Structure analysis and optimization of titanium heat exchanger. Tit Ind Prog, 2016, 33(4): 40

    張成, 孫萬倉. 鈦制換熱器結構的分析和設計優化. 鈦工業進展, 2016, 33(4):40
    [76] Xia Y C. Problems in the design of titanium pressure vessels. Chem Enterprise Manage, 2018(12): 196 doi: 10.3969/j.issn.1008-4800.2018.12.160

    夏宜岑. 鈦制壓力容器設計中的問題. 化工管理, 2018(12):196 doi: 10.3969/j.issn.1008-4800.2018.12.160
    [77] Chen X Y, Zheng B S. Design of large pressure vessel manufactured by titanium cladding steel plate. Process Equip Pip, 2010, 47(4): 1 doi: 10.3969/j.issn.1009-3281.2010.04.001

    陳襄頤, 鄭寶山. 大型鈦鋼復合板壓力容器的設計. 化工設備與管道, 2010, 47(4):1 doi: 10.3969/j.issn.1009-3281.2010.04.001
    [78] Lü G. About the manufacture and construction of thermal power plant chimney clad plate note. World Nonferrous Met, 2017(13): 273

    呂剛. 關于火電廠煙囪鈦鋼復合板制造及施工注意事項. 世界有色金屬, 2017(13):273
    [79] Wang L Y, Xie G, Wang R, et al. Corrosion resistance of titanium/steel clad plates for desulphurization chimney of power plants. Fail Anal Prev, 2017, 12(4): 222 doi: 10.3969/j.issn.1673-6214.2017.04.004

    王禮營, 謝剛, 王茹, 等. 火電廠脫硫煙囪用鈦/鋼復合板鈦覆層腐蝕試驗研究. 失效分析與預防, 2017, 12(4):222 doi: 10.3969/j.issn.1673-6214.2017.04.004
    [80] Su H, Luo X B, Chai F, et al. Manufacturing technology and application trends of titanium clad steel plates. J Iron Steel Res Int, 2015, 22(11): 977
    [81] Lu H W, Wu G B, Fan X L. Welding quality management of titanium clad steel plate chimney tube in power plant. Hebei Electr Power, 2015, 34(Suppl): 19

    盧洪偉, 武桂彬, 樊新利. 電廠鈦鋼復合板煙囪內筒焊接質量控制. 河北電力技術, 2015, 34(增刊): 19
    [82] Wu J Y. Effect of Interlayers and Heat Treatments on Interfacial Microstructure and Bonding Properties of Hot Rolled Titanium-Steel Clad Plate [Dissertation]. Beijing: Central Iron & Steel Research Institute, 2017

    吳靜怡. 中間層及熱處理對熱軋鈦?鋼復合界面組織及結合性能的影響研究[學位論文]. 北京: 鋼鐵研究總院, 2017
    [83] Wu Q X. Study on the application of titanium steel composite in super large floating structure. Tit Ind Prog, 1997(3): 27

    吳全興. 鈦鋼復合材在超大型海洋浮式構筑物上的適用研究. 鈦工業進展, 1997(3):27
    [84] Sahasrabudhe H, Harrison R, Carpenter C, et al. Stainless steel to titanium bimetallic structure using LENS?. Addit Manuf, 2015, 5: 1
    [85] Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology. J Mater Process Technol, 2013, 213(2): 161
    [86] Kim K H, Watanabe M, Mitsuishi K, et al. Impact bonding and rebounding between kinetically sprayed titanium particle and steel substrate revealed by high-resolution electron microscopy. J Phys D Appl Phys, 2009, 42(6): 065304
    [87] Lee J G, Hong S J, Lee M K, et al. High strength bonding of titanium to stainless steel using an Ag interlayer. J Nucl Mater, 2009, 395(1-3): 145
    [88] Elrefaey A, Tillmann W. Evaluation of transient liquid phase bonding between titanium and steel. Adv Eng Mater, 2009, 11(7): 556
    [89] Zeng Z Y, Wang G L, Jiang S, et al. Microstructure and mechanical properties of titanium clad steel plate by vacuum rolling cladding. Wide Heavy Plate, 2016, 22(5): 6 doi: 10.3969/j.issn.1009-7864.2016.05.002

    曾周燏, 王光磊, 江姍, 等. 真空軋制鈦/鋼復合板的組織與性能. 寬厚板, 2016, 22(5):6 doi: 10.3969/j.issn.1009-7864.2016.05.002
    [90] Jiang J B, Wang C S, Ji Y M, et al. Analysis on defects at composite interface of TA2/Q345B titanium clad steel plate. Angang Technol, 2018(4): 21 doi: 10.3969/j.issn.1006-4613.2018.04.006

    蔣健博, 王長順, 及玉梅, 等. TA2/Q345B鈦鋼復合板復合界面缺陷分析. 鞍鋼技術, 2018(4):21 doi: 10.3969/j.issn.1006-4613.2018.04.006
    [91] Liu X F, Wang H L, Bai Y L, et al. A Preparation Method of High Performance Titanium/Steel Bimetal Composite Plate: China Patent, CN201910954923.3. 2020-1-10

    劉雪峰, 王懷柳, 白于良, 等. 一種高性能鈦/鋼雙金屬復合板的制備方法: 中國專利, CN201910954923.3. 2020-1-10
    [92] Liu X F, Shi Z Z, Bai Y L, et al. A Preparation Method of Strong Metallurgical Bonding between Dissimilar Metals: China Patent, CN201810507752.5. 2018-11-16

    劉雪峰, 石章智, 白于良, 等. 一種異種金屬界面實現強冶金結合的制備方法: 中國專利, CN201810507752.5. 2018-11-16
  • 加載中
圖(4) / 表(2)
計量
  • 文章訪問數:  1899
  • HTML全文瀏覽量:  1226
  • PDF下載量:  165
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-08-31
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回