-
摘要: 高熵合金與非晶合金作為新一代金屬材料,具備許多優異的物理、化學及力學性能,在柔性電子領域展現出巨大的應用潛力。傳統的塊體高熵合金與非晶合金雖然性能優異,但由于材料本身的剛性特點無法滿足可變形電子設備的柔性需求,因此需要通過一定方式如降低維度、設計微結構等賦予其柔性特征。在簡述高熵合金柔性纖維的力學性能特點的基礎上,介紹了高熵合金薄膜作為潛在柔性材料的制備方式與結構性能特點,總結了非晶合金薄膜應用于電子皮膚、柔性電極、微結構制作等柔性電子領域中的最新進展,最后討論了現有工作的不足之處并對未來柔性電子的發展前景進行了展望。Abstract: In recent years, smart watches and folding-screen phones have become increasingly popular in the electronic market. This trend signifies that consumers nowadays not only pursue high performance of electronic devices but also demand higher comfort from electronic devices. With the improvement of material properties and progress in microelectronics technology, flexible materials and electronic devices have developed rapidly in recent years, forming a research hotspot in the electronics industry. Flexible electronic devices can achieve different deformation states owing to their small size, deformability, and portability. Unlike traditional electronic devices integrated with rigid materials such as silicon, flexible electronic devices can also undergo various mechanical deformations such as stretching, torsion, bending, and folding during usage, which meets the people's requirements for portable, lightweight, and deformable electronic devices. The unique characteristics of flexible electronic devices and materials will promote the innovative development of electronic skin, smart robots, artificial prostheses, implantable medical diagnosis, flexible displays, and the Internet of Things, which will eventually result in tremendous changes in our daily lives. As a new generation of metal materials, high-entropy alloys and metallic glasses have exhibited excellent physical, chemical, and mechanical properties owing to their unique structural characteristics, which show great potential in flexible electronics applications. However, the rigidity of the material itself cannot meet the requirements of deformable electronic devices. Therefore, it is necessary to realize the desired flexibility in these materials by reducing dimensions and designing microstructures. This paper briefly described the mechanical properties and preparation methods of high-entropy fibers and introduced the preparation methods, structural characteristics, and unique properties of high-entropy films as potential flexible materials. Applications of metallic glass in electronic skin, flexible electrodes, and microstructure designing were then summarized. Finally, the shortcomings of the existing work were discussed and the prospects for the development of flexible electronics in the future were presented.
-
Key words:
- high-entropy fibers /
- high-entropy films /
- metallic glass /
- flexible materials /
- flexible electronics
-
表 1 高熵合金纖維力學性能
Table 1. Mechanical properties of high-entropy alloy fiber
Composition Diameter/mm σs/MPa σb/MPa Fracture elongation/% Preparation method Reference Al0.3CoCrFeNi 1 1136 1207 7.9 Hot rotary forging + Hot drawing [17] CoCrFeNi 1 1100 1100 12.6 Hot forging + Cold drawing [18] CoCrNi 2 1100 1220 24.5 Hot rotary forging + Hot drawing [19] CoCrFeMnNi 2.5 1540 1710 10 Hot forging + CTCR [20] CoCrFeMnNi 8 1300 1300 6 Cold drawing [21] Co10Cr15Fe25Mn10Ni30V10 1 1600 1600 2.4 Cold drawing [22] 259luxu-164 -
參考文獻
[1] Almuslem A S, Shaikh S F, Hussain M M. Flexible and stretchable electronics for harsh-environmental applications. Adv Mater Technol, 2019, 4(9): 1900145 doi: 10.1002/admt.201900145 [2] Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83 doi: 10.1038/nature25494 [3] Quintero A V, Verplancke R, De Smet H, et al. Stretchable electronic platform for soft and smart contact lens applications. Adv Mater Technol, 2017, 2(8): 1700073 doi: 10.1002/admt.201700073 [4] Cai L, Song L, Luan P S, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 doi: 10.1038/srep03048 [5] Jang H, Park Y J, Chen X, et al. Graphene-based flexible and stretchable electronics. Adv Mater, 2016, 28(22): 4184 doi: 10.1002/adma.201504245 [6] Kumar D, Stoichkov V, Brousseau E, et al. High performing AgNW transparent conducting electrodes with a sheet resistance of 2.5?Ω Sq?1 based upon a roll-to-roll compatible post-processing technique. Nanoscale, 2019, 11(12): 5760 doi: 10.1039/C8NR07974A [7] Fan X, Nie W Y, Tsai H, et al. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci, 2019, 6(19): 1900813 doi: 10.1002/advs.201900813 [8] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567 [9] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A, 2004, 375-377: 213 doi: 10.1016/j.msea.2003.10.257 [10] Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys. Sci China-Mater, 2018, 61(1): 2 doi: 10.1007/s40843-017-9195-8 [11] Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd, 2014, 591: 11 doi: 10.1016/j.jallcom.2013.12.210 [12] Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104 doi: 10.1016/j.intermet.2014.05.018 [13] Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002 [14] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold–silicon alloys. Nature, 1960, 187(4740): 869 [15] Hui X D, Lv K, Si J J, et al. Development of Fe-based amorphous and nanocrystalline alloys with high saturation flux density. Chin J Eng, 2018, 40(10): 1158惠希東, 呂曠, 斯佳佳, 等. 高飽和磁化強度鐵基非晶納米晶軟磁合金發展概況. 工程科學學報, 2018, 40(10):1158 [16] Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses. Nat Commun, 2012, 3: 609 doi: 10.1038/ncomms1619 [17] Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038 [18] Huo W Y, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Mater, 2017, 141: 125 doi: 10.1016/j.scriptamat.2017.08.006 [19] Liu J P, Chen J X, Liu T W, et al. Superior strength-ductility CoCrNi medium-entropy alloy wire. Scripta Mater, 2020, 181: 19 doi: 10.1016/j.scriptamat.2020.02.002 [20] Kwon Y J, Won J W, Park S H, et al. Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement. Mater Sci Eng A, 2018, 732: 105 doi: 10.1016/j.msea.2018.06.086 [21] Ma X G, Chen J, Wang X H, et al. Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. J Alloys Compd, 2019, 795: 45 doi: 10.1016/j.jallcom.2019.04.296 [22] Cho H S, Bae S J, Na Y S, et al. Influence of reduction ratio on the microstructural evolution and subsequent mechanical properties of cold-drawn Co10Cr15Fe25Mn10Ni30V10 high entropy alloy wires. J Alloys Compd, 2020, 821: 153526 doi: 10.1016/j.jallcom.2019.153526 [23] Braeckman B R, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580: 71 doi: 10.1016/j.tsf.2015.02.070 [24] Liao W B, Zhang H T, Liu Z Y, et al. High strength and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering. Entropy, 2019, 21(2): 146 doi: 10.3390/e21020146 [25] Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol, 2017, 311: 321 doi: 10.1016/j.surfcoat.2017.01.012 [26] Yue T M, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloys Compd, 2014, 587: 588 doi: 10.1016/j.jallcom.2013.10.254 [27] Hsu W L, Yang Y C, Chen C Y, et al. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics, 2017, 89: 105 doi: 10.1016/j.intermet.2017.05.015 [28] Soare V, Burada M, Constantin I, et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl Surf Sci, 2015, 358: 533 doi: 10.1016/j.apsusc.2015.07.142 [29] Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)–(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055 [30] Braeckman B R, Depla D. Structure formation and properties of sputter deposited Nbx?CoCrCuFeNi high entropy alloy thin films. J Alloys Compd, 2015, 646: 810 doi: 10.1016/j.jallcom.2015.06.097 [31] Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98閆薛卉, 張勇. 高熵薄膜和成分梯度材料. 表面技術, 2019, 48(6):98 [32] Cai Y P, Wang G J, Ma Y J, et al. High hardness dual-phase high entropy alloy thin films produced by interface alloying. Scripta Mater, 2019, 162: 281 doi: 10.1016/j.scriptamat.2018.11.004 [33] Fang S, Wang C, Li C L, et al. Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films. J Alloys Compd, 2020, 820: 153388 doi: 10.1016/j.jallcom.2019.153388 [34] Cui P P, Li W, Liu P, et al. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J Alloys Compd, 2020, 834: 155063 doi: 10.1016/j.jallcom.2020.155063 [35] Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl Surf Sci, 2017, 396: 1420 doi: 10.1016/j.apsusc.2016.11.176 [36] Qiu X W. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J Alloys Compd, 2018, 735: 359 doi: 10.1016/j.jallcom.2017.11.158 [37] Chen Y Y, Hung S B, Wang C J, et al. High temperature electrical properties and oxidation resistance of V?Nb?Mo?Ta?W high entropy alloy thin films. Surf Coat Technol, 2019, 375: 854 doi: 10.1016/j.surfcoat.2019.07.080 [38] Feng X G, Tang G Z, Gu L, et al. Preparation and characterization of TaNbTiW multi-element alloy films. Appl Surf Sci, 2012, 261: 447 doi: 10.1016/j.apsusc.2012.08.030 [39] Pu G, Lin L W, Ang R, et al. Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1.5CoCrFeNi high entropy alloy films under He ion irradiation. Appl Surf Sci, 2020, 516: 146129 doi: 10.1016/j.apsusc.2020.146129 [40] El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv, 2019, 5(3): eaav2002 doi: 10.1126/sciadv.aav2002 [41] Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26(11): 1678 doi: 10.1002/adfm.201504755 [42] Yi J, Bai H Y, Zhao D Q, et al. Piezoresistance effect of metallic glassy fibers. Appl Phys Lett, 2011, 98(24): 241917 doi: 10.1063/1.3599843 [43] Xian H J, Cao C R, Shi J A, et al. Flexible strain sensors with high performance based on metallic glass thin film. Appl Phys Lett, 2017, 111(12): 121906 doi: 10.1063/1.4993560 [44] Jung M, Lee E, Kim D, et al. Amorphous FeZr metal for multi-functional sensor in electronic skin. npj Flexible Electron, 2019, 3: 8 doi: 10.1038/s41528-019-0051-7 [45] Cho J S, Jang W, Park K H, et al. Metallic amorphous alloy for long-term stable electrodes in organic sensors and photovoltaics. Org Electron, 2020, 84: 105811 doi: 10.1016/j.orgel.2020.105811 [46] Van Toan N, Tuoi T T K, Tsai Y C, et al. Micro-fabricated presure sensor using 50 nm-thick of Pd-based metallic glass freestanding membrane. Sci Rep, 2020, 10: 10108 doi: 10.1038/s41598-020-67150-y [47] Li S Q, Horikawa S, Park M K, et al. Amorphous metallic glass biosensors. Intermetallics, 2012, 30: 80 doi: 10.1016/j.intermet.2012.03.030 [48] Betz U, Olsson M K, Marthy J, et al. Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol, 2006, 200(20-21): 5751 doi: 10.1016/j.surfcoat.2005.08.144 [49] Lin H K, Chiu S M, Cho T P, et al. Improved bending fatigue behavior of flexible PET/ITO film with thin metallic glass interlayer. Mater Lett, 2013, 113: 182 doi: 10.1016/j.matlet.2013.09.084 [50] Lee S, Kim S W, Ghidelli M, et al. Integration of transparent supercapacitors and electrodes using nanostructured metallic glass films for wirelessly rechargeable, skin heat patches. Nano Lett, 2020, 20(7): 4872 doi: 10.1021/acs.nanolett.0c00869 [51] Qin C L, Zheng D H, Hu Q F, et al. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl Mater Today, 2020, 19: 100539 doi: 10.1016/j.apmt.2019.100539 [52] Panagiotopoulos N T, Georgarakis K, Jorge Jr A M, et al. Advanced ultra-light multifunctional metallic-glass wave springs. Mater Des, 2020, 192: 108770 doi: 10.1016/j.matdes.2020.108770 [53] Xian H J, Liu M, Wang X C, et al. Flexible and stretchable metallic glass micro-and nano-structures of tunable properties. Nanotechnology, 2018, 30(8): 085705 [54] Khang D Y, Jiang H Q, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758): 208 doi: 10.1126/science.1121401 [55] Tang J, Guo H, Zhao M M, et al. Highly stretchable electrodes on wrinkled polydimethylsiloxane substrates. Sci Rep, 2015, 5: 16527 doi: 10.1038/srep16527 [56] Xu J S, Chen J, Zhang M, et al. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv Electron Mater, 2016, 2(6): 1600022 doi: 10.1002/aelm.201600022 -