<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

熔鹽輔助法制備碳化鈦材料的研究進展

王珍 凌永一 王子昊 張婧 賈全利 劉新紅

王珍, 凌永一, 王子昊, 張婧, 賈全利, 劉新紅. 熔鹽輔助法制備碳化鈦材料的研究進展[J]. 工程科學學報, 2021, 43(1): 97-107. doi: 10.13374/j.issn2095-9389.2020.08.01.001
引用本文: 王珍, 凌永一, 王子昊, 張婧, 賈全利, 劉新紅. 熔鹽輔助法制備碳化鈦材料的研究進展[J]. 工程科學學報, 2021, 43(1): 97-107. doi: 10.13374/j.issn2095-9389.2020.08.01.001
WANG Zhen, LING Yong-yi, WANG Zi-hao, ZHANG Jing, JIA Quan-li, LIU Xin-hong. Research development in preparation of TiC materials via molten salt-assisted method[J]. Chinese Journal of Engineering, 2021, 43(1): 97-107. doi: 10.13374/j.issn2095-9389.2020.08.01.001
Citation: WANG Zhen, LING Yong-yi, WANG Zi-hao, ZHANG Jing, JIA Quan-li, LIU Xin-hong. Research development in preparation of TiC materials via molten salt-assisted method[J]. Chinese Journal of Engineering, 2021, 43(1): 97-107. doi: 10.13374/j.issn2095-9389.2020.08.01.001

熔鹽輔助法制備碳化鈦材料的研究進展

doi: 10.13374/j.issn2095-9389.2020.08.01.001
基金項目: 國家自然科學基金資助項目(51672253,51872266)
詳細信息
    通訊作者:

    E-mail:liuxinhong@zzu.edu.cn

  • 中圖分類號: TQ175.79

Research development in preparation of TiC materials via molten salt-assisted method

More Information
  • 摘要: 近年來,在熔鹽輔助法制備TiC材料方面已取得一定研究成果,已采用熔鹽輔助法制備出不同粒度、形貌各異及純度不同的TiC粉體、TiC涂層和TiC纖維等。本文在歸納總結熔鹽輔助碳熱還原法、熔鹽輔助電化學法、熔鹽輔助金屬熱還原法、熔鹽輔助直接碳化法以及熔鹽輔助微波合成法制備TiC材料的工藝、原理、產物純度、形貌及其優缺點等基礎上,對未來在雜質去除、提高TiC純度、調控TiC形貌等方面的研究進行了展望,期望為高質量TiC材料的制備提供技術參考。

     

  • 圖  1  熔鹽輔助碳熱還原法制備TiC的實驗過程示意圖。(a)球磨罐;(b)管式爐[20]

    Figure  1.  Schematic of the experimental process of preparing TiC by molten salt-assisted synthesis: (a) agate jar; (b) tube furnace[20]

    圖  2  TiC粉體顯微結構。(a)棒狀納米結構TiC;(b)片狀納米結構TiC[22]

    Figure  2.  Microstructure of TiC powders: (a) TiC nanorods; (b) TiC nanorod sheets[22]

    圖  3  Ti粉與乙炔黑反應在NaCl–KCl熔鹽中生成TiC的示意圖[22]

    Figure  3.  Schematic of TiC formation in NaCl–KCl molten salt using Ti powder and acetylene black[22]

    圖  4  TiC粉體顯微結構。(a)八面體TiC;(b)柱狀TiC[20]

    Figure  4.  Microstructure of TiC powders: (a) octahedral TiC; (b) columnar TiC[20]

    圖  5  TiC粉體的顯微結構。(a)SHS方法合成;(b)熔鹽輔助法合成[23]

    Figure  5.  Microstructure of TiC powders by different methods: (a) SHS method; (b) molten salt-assisted method[23]

    圖  6  熔鹽法制備的碳化鈦納米纖維SEM照片。(a)HF 處理之前;(b)HF處理之后[25]

    Figure  6.  SEM images of titanium carbide nanofibers prepared using molten salt-assisted method: (a) before HF acid treatment; (b) after HF acid treatment[25]

    圖  7  FFC法電解池示意圖[27]

    Figure  7.  Schematic of FFC electrolytic cell[27]

    圖  8  CaCl2–NaCl混合熔鹽中合成的TiC粉體的顯微結構[40]

    Figure  8.  Microstructure of TiC powders synthesized in CaCl2–NaCl mixed molten salt[40]

    圖  9  TiCxOy粉體的顯微結構[43]

    Figure  9.  Microstructure of TiCxOy powders[43]

    圖  10  海綿塊狀的TiC結構[24]

    Figure  10.  TiC structure of sponge block[24]

    圖  11  石墨表面的TiC涂層顯微結構圖[56]

    Figure  11.  Microstructure of TiC on graphite surface[56]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li X K, Xiu Z M, Sun X D, et al. Synthesis of titanium carbonitride nanopowders. J Northeast Univ Nat Sci, 2003, 24(3): 272

    李喜坤, 修稚萌, 孫旭東, 等. 淀粉還原氫化鈦制備Ti(C, N)納米粉. 東北大學學報, 2003, 24(3):272
    [2] Wu K H, Jiang Y, Jiao S Q, et al. Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method. J Solid State Chem, 2019, 227: 793
    [3] Koc R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture. J Mater Sci, 1998, 33(4): 1049
    [4] Gotoh Y, Fujimura K, Koike M, et al. Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction. Mater Res Bull, 2001, 36(13-14): 2263
    [5] Ivasishin O M, Markovsky P E, Savvakin D G, et al. Multi-layered structures of Ti?6Al?4V alloy and TiC and TiB composites on its base fabricated using blended elemental powder metallurgy. J Mater Process Technol, 2019, 269: 172
    [6] Li X. Preparation of TiC Molten Salt Based on Ti–Si Alloy[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2011

    李雪. 基于Ti–Si合金的TiC熔鹽法合成制備[學位論文]. 武漢: 武漢科技大學, 2011
    [7] Sun H Y, Kong X, Sen W, et al. Preparation of TiC powders by carbothermic reduction technique at vacuum condition. Adv Mater Res, 2015, 1089: 142
    [8] Xie Z, Zhou D L, Yang W Z, et al. Preparation of nano-TiC powders by in-situ carbothermal method in vacuum. Iron Steel Vanadium Titanium, 2017, 38(1): 38 doi: 10.7513/j.issn.1004-7638.2017.01.007

    謝真, 周大利, 楊為中, 等. 真空原位碳熱還原法制備納米碳化鈦粉體. 鋼鐵釩鈦, 2017, 38(1):38 doi: 10.7513/j.issn.1004-7638.2017.01.007
    [9] Wei H J, Wu Y, Long F, et al. Research status and prospect of preparation of ultrafine TiC powder. Mater Rev, 2008, 22(Spec): 112

    魏紅菊, 吳一, 龍飛, 等. 超細TiC粉體制備的研究現狀及展望. 材料導報, 2008, 22(專輯): 112
    [10] Kim B S, Woo Y C, Kim D J. Synthesis of ultra fine TiC powders by carbothermal reduction. Mater Sci Forum, 2007, 534-536: 141
    [11] Arendt R H. Liquid-phase sintering of magnetically isotropic and anisotropic compacts of BaFe12O19 and SrFe12O19. J Appl Phys, 1973, 44(7): 3300
    [12] Zhang J. Molten Salt Assisted Synthesis of SiC Nanowires and Their Photoluminescence Properties[Dissertation]. Zhengzhou: Zhengzhou University, 2016

    張舉. 熔鹽輔助制備SiC納米線及其光致發光性能研究[學位論文]. 鄭州: 鄭州大學, 2016
    [13] Chen W L. Application of molten salt in the preparation of inorganic powder. Shandong Chem Ind, 2015, 44(11): 61 doi: 10.3969/j.issn.1008-021X.2015.11.024

    陳偉利. 無機材料粉體制備中使用熔鹽法的探究. 山東化工, 2015, 44(11):61 doi: 10.3969/j.issn.1008-021X.2015.11.024
    [14] Liu X F, Fechler N, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev, 2013, 42(21): 8237
    [15] Yoon K H, Cho Y S, Kang D H. Molten salt synthesis of lead-based relaxors. J Mater Sci, 1998, 33(12): 2977
    [16] Li C C, Chiu C C, Desu S B. Formation of lead niobates in molten salt systems. J Am Ceram Soc, 1991, 74(1): 42
    [17] Kan X Q, Ding J, Deng C J, et al. Advances in the study of molten salt in the synthesis and preparation of inorganic materials//Proceedings of the 15th National Youth Symposium on Refractory Materials. Yangzhou, 2016: 12

    闞小清, 丁軍, 鄧承繼, 等. 熔鹽法在無機材料合成與制備中的研究進展//第十五屆全國耐火材料青年學術報告會論文集. 揚州, 2016: 12
    [18] Li X D, Zhu B Q, Wang H Z. Application of molten salt method in preparation of inorganic material powders. Mater Rev, 2006, 20(3): 44 doi: 10.3321/j.issn:1005-023X.2006.03.012

    李雪冬, 朱伯銓, 汪厚植. 熔鹽法在無機材料粉體制備中的應用. 材料導報, 2006, 20(3):44 doi: 10.3321/j.issn:1005-023X.2006.03.012
    [19] Jiang L J. Study on the use of molten salt in powder preparation of inorganic materials. Technol Outlook, 2016, 26(28): 143 doi: 10.3969/j.issn.1672-8289.2016.28.126

    江麗軍. 無機材料粉體制備中使用熔鹽法的研究. 科技展望, 2016, 26(28):143 doi: 10.3969/j.issn.1672-8289.2016.28.126
    [20] Song Y F, Zhu H X, Deng C J, et al. Synthesis of stoichiometric titanium carbide by a combination of carbothermal reduction and molten salt method and its characterization. Rare Met Mater Eng, 2018, 47(4): 1082
    [21] Cao C Z, Liu W Q, Javadi A, et al. Scalable manufacturing of 10 nm TiC nanoparticles through molten salt reaction. Procedia Manuf, 2017, 10: 634
    [22] Yang L X, Wang Y, Liu R J, et al. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti (Ⅱ) species. J Mater Sci Technol, 2020, 37: 173
    [23] Liang B Y, Zhang W X, Feng Y X. Synthesis of TiC by using carbon nanotube as C source. Inorg Chem Ind, 2017, 49(3): 34

    梁寶巖, 張旺璽, 馮燕翔. 以碳納米管為碳源合成碳化鈦. 無機鹽工業, 2017, 49(3):34
    [24] Lü P, Xiao Z C, Zhang Y H, et al. The preparation and performance of TiC coatings on the surface of carbon/carbon composites by molten salt. Carbon Tech, 2014, 33(3): 26

    呂品, 肖志超, 張永輝, 等. 炭/炭復合材料表面熔鹽反應制備TiC涂層及其性能研究. 炭素技術, 2014, 33(3):26
    [25] Li X K, Dong Z J, Westwood A, et al. Preparation of a titanium carbide coating on carbon fibre using a molten salt method. Carbon, 2008, 46(2): 305
    [26] Yang R S, Cui L S, Zheng Y J. Synthesis of TiC/NiTi composite powders in molten salt and their sintering. J Mater Sci, 2008, 43(1): 98
    [27] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361
    [28] Lu X G, Zou X L. Prospect and retrospect of molten salt electrolysis process for producing refractory metals and alloys. Chin J Nat, 2013, 35(2): 97

    魯雄剛, 鄒星禮. 熔鹽電解制備難熔金屬及合金的回顧與展望. 自然雜志, 2013, 35(2):97
    [29] Chen G Z, Gordo E, Fray D J. Direct electrolytic preparation of chromium powder. Metall Mater Trans B, 2004, 35(2): 223
    [30] Hyslop D J S, Abdelkader A M, Cox A, et al. Electrochemical synthesis of a biomedically important Co–Cr alloy. Acta Mater, 2010, 58(8): 3124
    [31] Abdelkader A M, Fray D J. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride. Electrochim Acta, 2012, 64: 10
    [32] Xu Q, Deng L Q, Wu Y, et al. A study of cathode improvement for electro-deoxidation of Nb2O5 in a eutectic CaCl2–NaCl melt at 1073 K. J Alloys Compd, 2005, 396(1-2): 288
    [33] Bai X T. Preparation of TiC by the Electrochemical Method using Na2TiO3C in CaCl2 Molten Salt[Dissertation]. Shenyang: Northeastern University, 2015

    白鑫濤. 鈦酸鈉?C氯化鈣熔鹽中電化學還原制備TiC過程研究[學位論文]. 沈陽: 東北大學, 2015
    [34] Lang X C, Xie H W, Zhai Y C, et al. Research on preparation of TiC powders by molten salt electrolysis. Rare Met Cem Carbides, 2013, 41(5): 1

    郎曉川, 謝宏偉, 翟玉春, 等. 熔鹽電解法制備TiC粉末的研究. 稀有金屬與硬質合金, 2013, 41(5):1
    [35] Cui F H. Preparation of TiC by Salt Electrochemistry Deoxy Method[Dissertation]. Shenyang: Northeastern University, 2014

    崔富暉. 熔鹽電化學脫氧制備碳化鈦[學位論文]. 沈陽: 東北大學, 2014
    [36] Hu M L, Bai C G, Du J H, et al. Development of preparation of titanium and titanium alloys by electrolysis in molten salt. Tit Ind Prog, 2009, 26(3): 7 doi: 10.3969/j.issn.1009-9964.2009.03.002

    扈玫瓏, 白晨光, 杜繼紅, 等. 熔鹽電解制備鈦及鈦合金研究進展. 鈦工業進展, 2009, 26(3):7 doi: 10.3969/j.issn.1009-9964.2009.03.002
    [37] Zhang L L, Wang S B, Jiao S Q, et al. Electrochemical synthesis of titanium oxycarbide in a CaCl2 based molten salt. Electrochim Acta, 2012, 75: 357
    [38] Chen K H. NaCl–CaCl2 Study on Preparation TiC of Titanium-containing Materials by Electrolysis of Molten Salt[Dissertation]. Kunming: Kunming University of Science and Technology, 2015

    陳孔豪. NaCl–CaCl2熔鹽電解含鈦物料制備TiC的研究[學位論文]. 昆明: 昆明理工大學, 2015
    [39] Xie J S, Ma W H, Qin B, et al. Study on preparation of TiC powder by molten salt electrolysis. Nonferrous Met (Extract Metall), 2013(12): 52

    謝江生, 馬文會, 秦博, 等. 熔鹽電解制備碳化鈦粉末的研究. 有色金屬(冶煉部分), 2013(12):52
    [40] Yan X Y, Pownceby M I, Cooksey M A, et al. Preparation of TiC powders and coatings by electrodeoxidation of solid TiO2 in molten salts. Miner Process Extract Metall, 2009, 118(1): 23
    [41] Chen K H, Hua Y X, Xu C Y, et al. Preparation of TiC/SiC composites from Ti-enriched slag by an electrochemical process in molten salts. Ceram Int, 2015, 41(9): 11428
    [42] Zhang Z, Hua Y X, Xu C Y, et al. Preparation of TiC/SiC nano composite powders from high titanium slag and C mixture by electrolysis in CaO–CaCl2–NaCl molten salt. Chin J Rare Met, 2018, 42(4): 408

    張臻, 華一新, 徐存英, 等. CaO–CaCl2–NaCl熔鹽電解高鈦渣/C制備TiC/SiC納米復合粉體. 稀有金屬, 2018, 42(4):408
    [43] Zhang L L, Jiao S Q, Zhu H M. TiCxOy prepared by direct electrochemical deoxidation//Proceedings of the 9th Metallurgical Engineering Science Forum. Beijing, 2010: 250

    張琳琳, 焦樹強, 朱鴻民. 直接電化學脫氧法制備TiCxOy//第九屆冶金工程科學論壇. 北京, 2010: 250
    [44] Peng R W. Electrochemistry of molten salt and its application. Chinese Science Bulletin, 1965, 10(5): 415

    彭瑞伍. 熔鹽電化學及其應用. 科學通報, 1965, 10(5):415
    [45] Lee D W, Alexandrovskii S V, Kim B K. Novel synthesis of substoichiometric ultrafine titanium carbide. Mater Lett, 2004, 58(9): 1471
    [46] Ding J. Synthesis of Carbide Powder in Molten Salt[Dissertation]. Wuhan: Wuhan University of Science and Technology, 2011

    丁娟. 熔鹽介質中碳化物粉體的制備研究[學位論文]. 武漢: 武漢科技大學, 2011
    [47] Liu S F, Shen Y F, Wang S G, et al. Microstructures and mechanism of Ti-metallizated graphite. Rare Met Mater Eng, 2006, 35(7): 1085 doi: 10.3321/j.issn:1002-185X.2006.07.017

    劉仕福, 沈以赴, 王少剛, 等. 石墨表面鈦金屬化界面的組織及機理. 稀有金屬材料與工程, 2006, 35(7):1085 doi: 10.3321/j.issn:1002-185X.2006.07.017
    [48] Piquero T, Vincent H, Vincent C, et al. Influence of carbide coatings on the oxidation behavior of carbon fibers. Carbon, 1995, 33(4): 455
    [49] Dong Z J, Li X K, Yuan G M, et al. Tensile strength, oxidation resistance and wettability of carbon fibers coated with a TiC layer using a molten salt method. Mater Des, 2013, 50: 156
    [50] Cao R, Li H X. Study on graphite surface modification by heterogeneous nucleation process. Refractories, 2006, 40(3): 161 doi: 10.3969/j.issn.1001-1935.2006.03.001

    曹冉, 李紅霞. 非均勻成核法石墨表面改性的研究. 耐火材料, 2006, 40(3):161 doi: 10.3969/j.issn.1001-1935.2006.03.001
    [51] Saberi A, Golestani-Fard F, Willert-Porada M, et al. Improving the quality of nanocrystalline MgAl2O4 spinel coating on graphite by a prior oxidation treatment on the graphite surface. J Eur Ceram Soc, 2008, 28(10): 2011
    [52] Wang K J, Guo Q G, Zhang G B, et al. Influence of TiC/C transition layers on coated graphite as thermal stress relieving layers. Surf Coat Technol, 2007, 201(16-17): 7472
    [53] Monteleone C, Poges S, Petroski K, et al. Atmospheric pressure chemical vapor infiltration of a titanium carbide interphase coating on carbon fiber. Ceram Int, 2020, 46(10): 15084
    [54] Liu X, Zhang S. Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts. J Am Ceram Soc, 2008, 91(2): 667
    [55] Li X K, Dong Z, Westwood A, et al. Low-temperature preparation of single crystal titanium carbide nanofibers in molten salts. Cryst Growth Des, 2011, 11(7): 3122
    [56] Ding J, Deng C J, Zhang X J, et al. Synthesis of titanium carbide coating on surface of graphite by molten salt media. J Funct Mater, 2014, 45(3): 03066 doi: 10.3969/j.issn.1001-9731.2014.03.015

    丁軍, 鄧承繼, 張小軍, 等. 熔鹽介質中石墨表面碳化鈦包覆的研究. 功能材料, 2014, 45(3):03066 doi: 10.3969/j.issn.1001-9731.2014.03.015
    [57] Dong Z J, Cui Z W, Yuan G M, et al. Study on the technique of the preparation of TiC coated carbon fibers at low temperatures by molten salt reaction method. China Ceram, 2014, 50(10): 8

    董志軍, 崔正威, 袁觀明, 等. 熔鹽反應法低溫制備TiC涂層炭纖維的工藝研究. 中國陶瓷, 2014, 50(10):8
    [58] Liang B Y, Xia T, Zhang W X, et al. Coating of TiC on the surface of carbon fiber by salt molten treatment with microwave irradiation. J Zhongyuan Univ Technol, 2017, 28(3): 53 doi: 10.3969/j.issn.1671-6906.2017.03.012

    梁寶巖, 夏濤, 張旺璽, 等. 微波輻照下碳纖維表面熔鹽鍍覆TiC研究. 中原工學院學報, 2017, 28(3):53 doi: 10.3969/j.issn.1671-6906.2017.03.012
  • 加載中
圖(11)
計量
  • 文章訪問數:  1693
  • HTML全文瀏覽量:  606
  • PDF下載量:  105
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-09-30
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回