<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

赤泥基光催化材料降解水中有機污染物的應用現狀及發展趨勢

王亞光 劉曉明

王亞光, 劉曉明. 赤泥基光催化材料降解水中有機污染物的應用現狀及發展趨勢[J]. 工程科學學報, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095-9389.2020.07.30.003
引用本文: 王亞光, 劉曉明. 赤泥基光催化材料降解水中有機污染物的應用現狀及發展趨勢[J]. 工程科學學報, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095-9389.2020.07.30.003
WANG Ya-guang, LIU Xiao-ming. Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water[J]. Chinese Journal of Engineering, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095-9389.2020.07.30.003
Citation: WANG Ya-guang, LIU Xiao-ming. Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water[J]. Chinese Journal of Engineering, 2021, 43(1): 22-32. doi: 10.13374/j.issn2095-9389.2020.07.30.003

赤泥基光催化材料降解水中有機污染物的應用現狀及發展趨勢

doi: 10.13374/j.issn2095-9389.2020.07.30.003
基金項目: 國家自然科學基金面上資助項目(52074035);中央高校基本科研業務費資助項目(FRF-AT-19-007)
詳細信息
    通訊作者:

    E-mail: liuxm@ustb.edu.cn

  • 中圖分類號: TG142.71

Review on the application and development of red mud-based photocatalytic materials for degradation of organic pollutants in water

More Information
  • 摘要: 光催化作為一種低成本且高效安全的環境凈化技術,被認為是全球能源危機和環境污染問題最好的解決方式之一。赤泥作為一種固廢不僅含有豐富的鐵氧化物,且具有較高的比表面積、孔結構等特點,近年來,赤泥基光催化材料在光催化降解水中有機污染物的研究中備受關注。本文介紹了赤泥的特性,概括了赤泥基光催化材料的制備方法,總結了赤泥基光催化材料在光催化降解水中有機污染物方面的應用,闡述了赤泥基光催化材料催化降解水中有機污染物的機理,探討了現有赤泥基光催化材料存在的問題。最后,基于以往的研究結果對赤泥基光催化材料未來的發展趨勢提出了展望及建議。

     

  • 圖  1  赤泥的X射線衍射圖[21]

    Figure  1.  X-ray diffraction patterns of red mud[21]

    圖  2  赤泥的SEM(a和b)及主要的元素分布圖[22]

    Figure  2.  SEM (a and b) and element distribution images of red mud[22]

    圖  3  半導體的光催化反應過程的示意圖[23]

    Figure  3.  Schematic of the photocatalytic reaction process of semiconductor[23]

    圖  4  赤泥的SEM圖。(a)未煅燒赤泥;(b)250 ℃煅燒后赤泥;(c)350 ℃煅燒后赤泥;(d)450 ℃煅燒后赤泥[24]

    Figure  4.  SEM images of red mud: (a) uncalcined red mud; (b) calcined red mud for 250 ℃; (c) calcined red mud for 350 ℃; (d) calcined red mud for 450 ℃[24]

    圖  5  赤泥的SEM圖。(a)未改性的赤泥;(b)酸改性后的赤泥[26]

    Figure  5.  SEM images of red mud: (a) unmodified red mud; (b) acid modified red mud[26]

    圖  6  赤泥、氧化石墨烯、赤泥–氧化石墨烯材料的SEM及赤泥–氧化石墨烯材料的TEM圖。(a)氧化石墨烯;(b)赤泥;(c)赤泥–氧化石墨烯材料;(d)赤泥–氧化石墨烯材料;(e)和(f)赤泥–氧化石墨烯材料TEM圖[28]

    Figure  6.  SEM images of red mud, graphene oxide, red mud–graphene oxide material, and TEM images of red mud–graphene oxide material: (a) graphene oxide; (b) red mud; (c) red mud–graphene oxide material; (d) red mud–graphene oxide material; (e) and (f) TEM images of red mud–graphene oxide material[28]

    圖  7  赤泥光催化降解四環素的活性物質捕獲實驗結果[24]

    Figure  7.  Trapping experiments of active species during photocatalytic degradation of tetracycline by red mud[24]

    圖  8  赤泥光催化降解四環素可能的機理[24]

    Figure  8.  Possible photocatalytic mechanism of degradation of tetracycline by red mud[24]

    圖  9  赤泥–氧化石墨烯材料光催化降解四環素中活性物質的捕獲實驗結果[28]

    Figure  9.  Trapping experiments of active species during photocatalytic degradation of tetracycline by red mud–graphene oxide material[28]

    圖  10  赤泥–氧化石墨烯材料光催化降解四環素可能的機理[28]

    Figure  10.  Possible photocatalytic mechanism of degradation of tetracycline by red mud–graphene oxide material[28]

    圖  11  可見光照射下赤泥–Co降解亞甲基藍染料的機理[33]

    Figure  11.  Photodegradation mechanism of methylene blue dye catalyzed by red mud–Co under visible light irradiation[33]

    圖  12  赤泥–g-C3N4光催化降解四環素活性物質捕獲實驗。(a)捕獲實驗的結果;(b)黑暗和光照射下DMPO捕獲$ \cdot {\rm{O}}_2^ - $的ESR光譜[35]

    Figure  12.  Trapping experiments of active species during the photocatalytic degradation of tetracycline by red mud–g-C3N4: (a) results of trapping experiments; (b) the ESR spectra of $ \cdot {\rm{O}}_2^ - $trapped by DMPO under dark and light irradiation[35]

    圖  13  赤泥–g-C3N4光催化降解四環素可能的機理[35]

    Figure  13.  Possible photocatalytic mechanism for degradation of tetracycline by red mud–g-C3N4[35]

    表  1  赤泥基光催化材料的制備方法

    Table  1.   Preparation methods of red mud-based photocatalytic materials

    NameMethodsMain experimental stepsReference
    Red mud photocatalytic materialCalcination modificationThe red mud photocatalyst material was obtained by drying, grinding, sieving, calcination, and grinding for red mud.[24]
    Red mud photocatalytic materialAcid modificationThe red mud photocatalyst material was prepared by acid leaching, neutralization, hydrothermal synthesis, and washing for red mud.[25]
    Red mud photocatalytic materialAcid modificationThe red mud photocatalysis material was obtained by drying, grinding, acid leaching, and washing for red mud.[26]
    Red mud photocatalytic materialCalcination-acid modificationThe red mud photocatalytic material was prepared by drying, grinding, acid leaching, and calcination for red mud.[27]
    Red mud–graphene oxide photocatalytic materialComposite modificationThe red mud–graphene oxide photocatalytic material was prepared by drying, grinding, compounding with graphene, and filtering for red mud.[28]
    Red mud–Cphotocatalytic materialComposite modificationThe red mud–C photocatalytic material was obtained by drying, washing, compounding with ethanol, calcination, and grinding for red mud.[29]
    Red mud–SiO2 photocatalytic materialComposite modificationThe red mud–SiO2 photocatalytic material was prepared by acid leaching, washing, compounding with cetyltrimethylammonium bromide, ammonia water and ethyl orthosilicate, and calcination for red mud.[30]
    Red mud–glass fiber photocatalytic materialComposite modificationThe red mud–glass fiber photocatalytic material was prepared by dispersing, smearing on the surface of fiber glass, and calcination for red mud.[31]
    Red mud–Fe photocatalytic materialComposite modificationThe red mud–Fe photocatalytic material was prepared by dispersing, compounding with FeCl3·6H2O, drying, washing, calcination, and grinding for red mud.[32]
    Red mud–Co photocatalytic materialComposite modificationThe red mud–Co photocatalytic material was prepared by dealkalization, calcination, compounding with Co(NO3)2·6H2O, drying, calcination, and grinding for red mud.[33]
    Red mud–TiO2 photocatalytic materialComposite modificationThe red mud–TiO2 photocatalytic material was prepared by acid leaching, compounding with TiO2, dispersing, filtering, calcination, and grinding for red mud.[34]
    Red mud–g-C3N4 photocatalytic materialComposite modificationThe red mud–g-C3N4 photocatalytic material was prepared by drying, grinding, compounding with melamine, calcination, and grinding for red mud.[35]
    Red mud–C–TiO2 photocatalytic materialComposite modificationThe red mud–C–TiO2 photocatalytic material was obtained by calcination reduction, compounding with acetone, compounding with TiO2, drying, calcination,
    and grinding for red mud.
    [36]
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Sousa J C G, Ribeiro A R, Barbosa M O, et al. a review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater, 2018, 344: 146 doi: 10.1016/j.jhazmat.2017.09.058
    [2] Li S N, Ma R X, Wang C Y. Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp. Int J Miner Metall Mater, 2018, 25(3): 310 doi: 10.1007/s12613-018-1574-y
    [3] Zheng F, Guo M, Zhang M. Hydrothermal preparation of WO3 nanorod arrays and their photocatalytic properties. J Univ Sci Technol Beijing, 2014, 36(6): 810

    鄭鋒, 郭敏, 張梅. 水熱法制備WO3納米棒陣列及其光催化性能. 北京科技大學學報, 2014, 36(6):810
    [4] Pathania D, Katwal R, Kaur H. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles. Int J Miner Metall Mater, 2016, 23(3): 358 doi: 10.1007/s12613-016-1245-9
    [5] Zhang G H, Zhang X Q, Meng Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem Eng J, 2020, 392: 123684 doi: 10.1016/j.cej.2019.123684
    [6] Matafonova G, Batoev V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review. Water Res, 2018, 132: 177 doi: 10.1016/j.watres.2017.12.079
    [7] Sudhaik A, Raizada P, Shandilya P, et al. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J Ind Eng Chem, 2018, 67: 28 doi: 10.1016/j.jiec.2018.07.007
    [8] Sharma K, Dutta V, Sharma S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J Ind Eng Chem, 2019, 78: 1 doi: 10.1016/j.jiec.2019.06.022
    [9] Kumari P, Bahadur N, Dumée L F. Photo-catalytic membrane reactors for the remediation of persistent organic pollutants–a review. Sep Purif Technol, 2020, 230: 115878 doi: 10.1016/j.seppur.2019.115878
    [10] Lum P T, Foo K Y, Zakaria N A, et al. Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater Chem Phys, 2020, 241: 122405 doi: 10.1016/j.matchemphys.2019.122405
    [11] Li H, Liu X M, Zhao X B, et al. Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust. Chin J Eng, 2017, 39(9): 1331

    李恒, 劉曉明, 趙喜彬, 等. 生物質松木鋸末中低溫還原高鐵拜耳法赤泥. 工程科學學報, 2017, 39(9):1331
    [12] Mukiza E, Zhang L L, Liu X M, et al. Utilization of red mud in road base and subgrade materials: a review. Resour Conserv Recycl, 2019, 141: 187 doi: 10.1016/j.resconrec.2018.10.031
    [13] Zhang S, Yi J J, Chen J R, et al. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem Eng J, 2020, 380: 122583 doi: 10.1016/j.cej.2019.122583
    [14] Sun Z H, Guo M, Zhang M. Hydrothermal synthesis of nanostructured iron oxide visible-light photocatalysts from mill scales. Chin J Eng, 2015, 37(1): 70

    孫澤輝, 郭敏, 張梅. 由鐵鱗制備納米氧化鐵可見光光催化劑. 工程科學學報, 2015, 37(1):70
    [15] Mirmasoomi S R, Ghazi M M, Galedari M. Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol, 2017, 175: 418 doi: 10.1016/j.seppur.2016.11.021
    [16] Nuengmatcha P, Porrawatkul P, Chanthai S, et al. Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. J Environ Chem Eng, 2019, 7(6): 103438 doi: 10.1016/j.jece.2019.103438
    [17] Ng T W, Zhang L S, Liu J S, et al. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr. Water Res, 2016, 90: 111 doi: 10.1016/j.watres.2015.12.022
    [18] El-Maghrabi H H, Al-Kahlawy A A, Nada A A, et al. Photocorrosion resistant Ag2CO3@Fe2O3/TiO2–NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazard Mater, 2018, 360: 250 doi: 10.1016/j.jhazmat.2018.08.002
    [19] Mohamed H H. Rationally designed Fe2O3/GO/WO3 Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. J Photochem Photobiol A, 2019, 378: 74 doi: 10.1016/j.jphotochem.2019.04.023
    [20] Cao J L, Yan Z L, Deng Q F, et al. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catal Sci Technol, 2014, 4(2): 361 doi: 10.1039/C3CY00519D
    [21] Das B, Mohanty K. a review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renew Energ, 2019, 143: 1791 doi: 10.1016/j.renene.2019.05.114
    [22] Feng Y, Wu D L, Liao C Z, et al. Red mud powders as low-cost and efficient catalysts for persulfate activation: pathways and reusability of mineralizing sulfadiazine. Sep Purif Technol, 2016, 167: 136 doi: 10.1016/j.seppur.2016.04.051
    [23] Ge J L, Zhang Y F, Heo Y J, et al. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts, 2019, 9(2): 122 doi: 10.3390/catal9020122
    [24] Shi W L, Ren H J, Li M Y, et al. Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes. Chem Eng J, 2020, 382: 122876 doi: 10.1016/j.cej.2019.122876
    [25] Wang X H, Liu H, Zhou Z H, et al. Study on dispose of dye wastewater by photocatalysts prepared from red mud. Ind Saf Environ Prot, 2012, 38(11): 30 doi: 10.3969/j.issn.1001-425X.2012.11.011

    王小華, 劉紅, 周志輝, 等. 赤泥制備光催化劑降解染料廢水的研究. 工業安全與環保, 2012, 38(11):30 doi: 10.3969/j.issn.1001-425X.2012.11.011
    [26] Ma M J, Wang G Y, Yang Z P, et al. Preparation, characterization, and photocatalytic properties of modified red mud. Adv Mater Sci Eng, 2015, 2015: 907539
    [27] Busto R V, Gon?alves M, Coelho L H G. Assessment of the use of red mud as a catalyst for photodegradation of bisphenol A in wastewater treatment. Water Sci Technol, 2016, 74(6): 1283 doi: 10.2166/wst.2016.309
    [28] Ren H J, Tang Y B, Shi W L, et al. Red mud modified with graphene oxide for enhanced visible-light-driven photocatalytic performance towards the degradation of antibiotics. New J Chem, 2019, 43(48): 19172 doi: 10.1039/C9NJ04697F
    [29] Dias F F, Oliveira A A S, Arcanjo A P, et al. Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton. Appl Catal B, 2016, 186: 136 doi: 10.1016/j.apcatb.2015.12.049
    [30] Rath D, Nanda B, Parida K. Sustainable nano composite of mesoporous silica supported red mud for solar powered degradation of aquatic pollutants. J Environ Chem Eng, 2017, 5(6): 6137 doi: 10.1016/j.jece.2017.11.037
    [31] Soldan M, Kobeticova H, Gerulova K. Photocatalytic degradation of methylene blue using glass fibers catalytic layer covered with red mud. J Mater Appl, 2017, 6(1): 23
    [32] Hajjaji W, Pullar R C, Labrincha J A, et al. Aqueous Acid Orange 7 dye removal by clay and red mud mixes. Appl Clay Sci, 2016, 126: 197 doi: 10.1016/j.clay.2016.03.016
    [33] Sahu M K, Patel R K. Novel visible-light-driven cobalt loaded neutralized red mud (Co/NRM) composite with photocatalytic activity toward methylene blue dye degradation. J Ind Eng Chem, 2016, 40: 72 doi: 10.1016/j.jiec.2016.06.008
    [34] Qiu A L, Zhu L Z, Liu J. A Method of Red Mud Activation Modification and Its Application: China Patent, CN201710265875.8. 2018-11-02.

    邱愛玲, 朱立忠, 劉俊. 一種赤泥活化改性的方法及應用: 中國專利, CN201710265875.8. 2018-11-02.
    [35] Shi W L, Ren H J, Huang X L, et al. Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep Purif Technol, 2020, 237: 116477 doi: 10.1016/j.seppur.2019.116477
    [36] Pereira L D O, de Moura S G, Coelho G C M, et al. Magnetic photocatalysts from industrial residues and TiO2 for the degradation of organic contaminants. J Environ Chem Eng, 2019, 7(1): 102826 doi: 10.1016/j.jece.2018.102826
    [37] Xu L J, Wang Y D, Liu J, et al. High-efficient visible-light photocatalyst based on graphene incorporated Ag3PO4 nanocomposite applicable for the degradation of a wide variety of dyes. J Photochem Photobiol A, 2017, 340: 70 doi: 10.1016/j.jphotochem.2017.02.022
    [38] Deng Z, Zhang X H, Chan K C, et al. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere, 2017, 174: 76 doi: 10.1016/j.chemosphere.2017.01.094
    [39] Rajeswari A, Vismaiya S, Pius A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J, 2017, 313: 928 doi: 10.1016/j.cej.2016.10.124
    [40] Li W C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut, 2014, 187: 193 doi: 10.1016/j.envpol.2014.01.015
    [41] Liu J L, Wong M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int, 2013, 59: 208 doi: 10.1016/j.envint.2013.06.012
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  2255
  • HTML全文瀏覽量:  1034
  • PDF下載量:  149
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-30
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回