<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種基于差分進化的正弦余弦算法

劉小娟 王聯國

劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法[J]. 工程科學學報, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
引用本文: 劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法[J]. 工程科學學報, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
Citation: LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002

一種基于差分進化的正弦余弦算法

doi: 10.13374/j.issn2095-9389.2020.07.26.002
基金項目: 甘肅農業大學科技創新基金資助項目(GAU-XKJS-2018-251);甘肅省教育信息化建設專項任務資助項目(2011-02);國家自然科學基金資助項目(61751313)
詳細信息
    通訊作者:

    E-mail:wanglg@gsau.edu.cn

  • 中圖分類號: TP18

A sine cosine algorithm based on differential evolution

More Information
  • 摘要: 正弦余弦算法是一種新型仿自然優化算法,利用正余弦數學模型來求解優化問題。為提高正弦余弦算法的優化精度和收斂速度,提出了一種基于差分進化的正弦余弦算法。該算法通過非線性方式調整參數提高算法的搜索能力、利用差分進化策略平衡算法的全局探索能力及局部開發能力并加快收斂速度、通過偵察蜂策略增加種群多樣性以及利用全局最優個體變異策略增強算法的局部開發能力等優化策略來改進算法,最后通過仿真實驗和結果分析證明了算法的優異性能。

     

  • 圖  1  SCADE算法流程圖

    Figure  1.  Flowchart of the proposed SCADE algorithm

    圖  2  收斂曲線圖。(a)F2;(b)F5;(c)F8;(d)F10;(e)F14;(f)F23

    Figure  2.  Convergence curves: (a) F2; (b) F5; (c) F8; (d) F10; (e) F14; (f) F23

    表  1  $\sin {r_2}$的符號對2種分項符號的影響

    Table  1.   Effect of the sign of sin r2 on the signs of two itemized items

    ItemCase 1Case 2Case 3Case 4
    $\left( {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right)$++??
    $\left| {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right|$++++
    $\sin {r_2}$+?+?
    $\sin {r_2} \cdot \left( {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right)$+??+
    $\sin {r_2} \cdot \left| {{r_3}p_{{\rm{g}}j}^t - x_{ij}^t} \right|$+?+?
    下載: 導出CSV

    表  2  各算法設置的具體參數表

    Table  2.   Specific parameters set by each algorithm

    AlgorithmParameters
    SCA[2]r2∈[0, 2π],r3∈[?2, 2],r4∈[0, 1],a=2,M=30,T=500
    SCADEa=2,M=30,T=500,nlim=50,CR=0.3,kmax=3,h=10,δ2max=0.6,δ2min=0.0001
    PSO[23]M=30,T=500,C1=1,C2=2,Vmax=4,W linearly
    decreases from 0.9 to 0.4
    DE[24]M=30,T=500,CR=0.3,F is randomly
    generated between 0.2 and 0.6
    ABC[25]M=30,T=500,nlim=50
    m-SCA[11]M=30,T=500,JR=0.1
    COSCA[6]M=30,T=500,η=1,astart=1,aend=0,pr=0.1
    下載: 導出CSV

    表  3  SCADE與基本SCA的實驗結果

    Table  3.   Experimental results of SCADE and basic SCA

    FunctionAlgorithmAverage optimal valueMedian valueBest valueWorst valueStandard deviationAverage running time/s
    F1SCA11.21804.07911.5764×10?281.114018.59100.0370
    SCADE9.5838×10?951.1814×10?1022.0847×10?1102.7446×10?934.9205×10?940.0182
    F2SCA1.3204×10?27.5606×10?34.7739×10?41.0687×10?12.0170×10?20.0469
    SCADE6.1367×10?634.4107×10?687.8150×10?741.5173×10?612.7342×10?620.0286
    F3SCA9.8213×1037.4877×1031.7335×1032.8484×1046.1244×1030.0602
    SCADE1.9344×10?41.6183×10?94.8025×10?185.4721×10?39.8108×10?40.0408
    F4SCA34.732034.149013.426063.997011.64200.0431
    SCADE2.8460×10?99.2782×10?151.2815×10?228.5125×10?81.5279×10?80.0232
    F5SCA2.8604×1045.8118×1032.3455×1024.8554×1058.6617×1040.1251
    SCADE26.926026.917026.625027.27901.4726×10?10.1116
    F6SCA12.65907.31354.336886.857015.18200.0377
    SCADE7.5412×10?55.1302×10?51.3238×10?55.5298×10?49.4555×10?50.0182
    F7SCA1.0554×10?18.6533×10?21.2670×10?23.1593×10?18.2888×10?20.0382
    SCADE8.4372×10?36.9961×10?33.1314×10?52.4622×10?27.3689×10?30.0190
    F8SCA?3.7782×103?3.7519×103?4.4256×103?3.2776×1032.6104×1020.0630
    SCADE?1.2005×104?1.1969×104?1.2549×104?1.1267×1042.5311×1020.0429
    F9SCA38.947025.89005.2761×10?31.5292×10239.39200.0822
    SCADE000000.0618
    F10SCA11.131014.76308.0444×10?220.35109.28780.0571
    SCADE2.1282×10?155.8872×10?165.8872×10?164.1414×10?151.7605×10?150.0469
    F11SCA8.7567×10?19.4828×10?15.2069×10?31.62973.3704×10?10.0594
    SCADE000000.0387
    F12SCA1.3000×10310.25601.21492.0406×1044.4303×1030.0923
    SCADE3.4531×10?53.4338×10?61.3607×10?69.2574×10?41.6551×10?40.0582
    F13SCA3.6900×1051.0341×1033.42293.1604×1067.8302×1050.0937
    SCADE8.1272×10?33.5569×10?51.6368×10?59.9458×10?22.2908×10?20.0591
    F14SCA1.52889.9872×10?19.9800×10?12.98218.7639×10?10.0651
    SCADE9.9800×10?19.9800×10?19.9800×10?19.9800×10?14.9981×10?160.0658
    F15SCA1.0426×10?38.5768×10?43.6524×10?41.5525×10?33.5566×10?40.0199
    SCADE7.5165×10?47.5211×10?44.2280×10?41.2236×10?31.5392×10?40.0185
    F16SCA?1.0316?1.0316?1.0316?1.03146.0391×10?150.0029
    SCADE?1.0316?1.0316?1.0316?1.03164.4409×10?50.0029
    F17SCA4.0059×10?13.9945×10?13.9789×10?14.1082×10?13.3623 ×10?30.0036
    SCADE3.9789×10?13.9789×10?13.9789×10?13.9789×10?100.0035
    F18SCA3.0011333.00112.0536×10?40.0032
    SCADE33333.1780×10?70.0033
    F19SCA?3.8545?3.8542?3.8622?3.85042.7837×10?30.0087
    SCADE?3.8628?3.8628?3.8628?3.86287.6401×10?130.0077
    F20SCA?2.9131?3.0006?3.1491?2.24752.4164×10?10.0131
    SCADE?3.3119?3.3220?3.3220?3.20313.0470×10?20.0101
    F21SCA?2.2308?8.8080×10?1?7.1703?4.9646×10?11.96160.0077
    SCADE?9.7526?10.1530?10.1530?6.51378.9107×10?10.0064
    F22SCA?3.3632?3.8034?5.6727?9.0289×10?11.72610.0088
    SCADE?10.4029?10.4029?10.4029?10.40291.4504×10?150.0071
    F23SCA?4.1765?4.0169?4.0169?9.4459×10?12.09410.0098
    SCADE?10.5364?10.5364?10.5364?10.53643.4495×10?140.0088
    下載: 導出CSV

    表  4  SCADE與SCA改進算法及其它智能優化算法的性能比較

    Table  4.   Performance comparison of SCADE with modified SCA and other algorithms

    FunctionEvaluation criterionSCAPSODEABCm-SCACOSCASCADE
    F1Average optimal value11.21807.1569×10?34.9048×10?52.1134×10?42.1878×10?38.0426×10?819.5838×10?95
    Standard deviation18.59105.7977×10?31.7664×10?53.5538×10?45.0035×10?34.0035×10?804.9205×10?94
    F2Average optimal value1.3204×10?23.10716.7504×10?45.7851×10?35.9935×10?51.7522×10?446.1367×10?63
    Standard deviation2.0170×10?25.24531.8924×10?43.1108×10?31.9175×10?45.1460×10?442.7342×10?62
    F3Average optimal value9.8213×10366.46843.5128×1041.9536×1042.9935×1022.3314×10?11.9344×10?4
    Standard deviation6.1244×10321.86476.0671×1033.4087×1033.5212×1021.24419.8108×10?4
    F4Average optimal value34.73208.7838×10?18.215667.39422.20076.0249×10?312.8460×10?9
    Standard deviation11.64201.9543×10?11.64084.91351.21622.8798×10?301.5279×10?8
    F5Average optimal value2.8604×1041.0885×10285.617939.964933.569028.42802.6926×101
    Standard deviation8.6617×10476.07925.6043×10133.914412.73002.8280×10?11.4726×10?1
    F6Average optimal value12.65906.0666×10?35.3471×10?56.3063×10?41.67952.05987.5412e-005
    Standard deviation15.18203.9077×10?33.1452×10?52.0140×10?34.6889×10?13.0051×10?19.4555×10?5
    F7Average optimal value1.0554×10?14.14294.5135×10?25.4601×10?11.3485×10?22.0053×10?38.4372×10?3
    Standard deviation8.2888×10?24.71661.3457×10?21.6048×10?18.1723×10?31.4012×10?37.3689×10?3
    F8Average optimal value?3.7782×103?4.1603×103?8.4186×103?1.1434×104?3.7936×103?4.1950×103?1.2005×104
    Standard deviation2.6104×1027.9194×1024.3777×1021.8317×1023.0895×1023.3863×1022.5311×102
    F9Average optimal value38.947087.98051.0705×1026.13813.587200
    Standard deviation39.392028.11849.46362.53527.801800
    F10Average optimal value11.13101.4188×10?11.8656×10?31.6109×10?14.9953×10?31.2993×10?152.1282×10?15
    Standard deviation9.28782.3163×10?14.9290×10?42.7105×10?17.2695×10?31.4211×10?151.7605×10?15
    F11Average optimal value8.7567×10?17.9155×10?34.1185×10?33.6220×10?23.9031×10?200
    Standard deviation3.3704×10?19.0220×10?31.0744×10?23.2998×10?27.2525×10?200
    F12Average optimal value1.3000×1031.0510×10?21.3328×10?53.4010×10?22.7777×10?11.8111×10?13.4531×10?5
    Standard deviation4.4303×1033.1074×10?21.1565×10?53.2998×10?21.7035×10?11.0280×10?11.6551×10?4
    F13Average optimal value3.6900×1056.0034×10?36.1145×10?57.3970×10?41.95352.64068.1272×10?3
    Standard deviation7.8302×1059.4010×10?33.6027×10?52.1983×10?47.1911×10?11.3379×10?12.2908×10?2
    F14Average optimal value1.52882.60839.9800×10?19.9800×10?11.17753.49769.9800×10?1
    Standard deviation8.7639×10?12.35005.3934×10?164.0294×10?165.1443×10?12.51124.9981×10?16
    F15Average optimal value1.0426×10?32.2388×10?31.3288×10?38.9459×10?45.3421×10?45.6655×10?47.5165×10?4
    Standard deviation3.5566×10?44.8585×10?33.5391×10?32.5167×10?41.0454×10?41.4934×10?41.5392×10?4
    F16Average optimal value?1.0316?1.0316?1.0316?1.0316?1.0316?1.0316?1.0316
    Standard deviation6.0391×10?54.4409×10?164.4409×10?164.4600×10?164.5772×10?69.5922×10?74.4409×10?16
    F17Average optimal value4.0059×10?13.9789×10?13.9789×10?13.9789×10?13.9793×10?13.9827×10?10.3980
    Standard deviation3.3623×10?3009.6549×10?136.4763×10?54.2222×10?40
    F18Average optimal value3.0001333.000633.00013
    Standard deviation2.0536×10?43.4807×10?152.2204×10?151.5874×10?32.7799×10?58.7317×10?53.1780×10?7
    F19Average optimal value?3.8545?3.8604?3.8628?3.8628?3.8623?3.8615?3.8628
    Standard deviation2.7837×10?33.6118×10?32.2204×10?157.3021×10?73.3231×10?41.3023×10?37.6401×10?13
    F20Average optimal value?2.9131?3.1561?3.3037?3.3220?3.3100?3.1561?3.3119
    Standard deviation2.4164×10?11.2335×10?14.0486×10?21.3698×10?112.1606×10?23.7641×10?23.0470×10?2
    F21Average optimal value?2.2308?7.3872?9.5674?10.1416?9.9300?9.6428?9.7526
    Standard deviation1.96163.06381.79415.0343×10?21.7054×10?11.26298.9107×10?1
    F22Average optimal value?3.3632?8.9467?10.1484?10.3785?10.2330?10.2540?10.4029
    Standard deviation1.72612.69471.37098.7082×10?21.0363×10?11.0668×10?11.4504
    F23Average optimal value?4.1765?9.0497?1.0325×101?1.0526×101?1.0315×101?1.0369×101?10.5364
    Standard deviation2.09412.76221.06212.8287×10?21.7846×10?11.2772×10?13.4495×10?14
    Decision result+ /=/ ?0/0/232/2/195/2/165/0/182/0/213/2/18
    下載: 導出CSV

    表  5  nlim對SCADE的性能影響

    Table  5.   Influence of nlim on the SCADE performance

    nlimF2 (P=0.705)F8 (P=0)F23 (P=0)
    Average optimal valueStandard deviationRankAverage optimal valueStandard deviationRank Average optimal valueStandard deviationRank
    102.5689×10?631.3681×10?624?1.1748×1042.8466×1024?10.53642.9172×10?144
    301.1534×10?626.1924×10?625?1.1633×1043.4766×1025?10.53642.8004×10?135
    509.5748×10?664.3056×10?651?1.2005×1042.5311×1021?10.53649.2245×10?152
    702.3276×10?651.1086×10?642?1.1938×1042.9715×1022?10.53642.6348×10?151
    1009.2052×10?644.8551×10?633?1.1928×1043.1146×1023?10.53641.7341×10?143
    下載: 導出CSV

    表  6  CR對SCADE的性能影響

    Table  6.   Influence of CR on the SCADE performance

    CRF2 (P=0.15)F8 (P=0)F23 (P=0)
    Average optimal valueStandard deviationRankAverage optimal valueStandard deviationRank Average optimal valueStandard deviationRank
    0.17.5350×10?652.9765×10?642?1.2451×1041.1012×1021?10.50801.4802×10?14
    0.21.3455×10?606.9665×10?605?1.2144×1042.3487×1022?10.53647.7044×10?63
    0.39.0366×10?672.5547×10?661?1.1740×1042.4093×1023?10.53643.7542×10?151
    0.45.1033×10?622.7365×10?614?1.1325×1045.0817×1024?10.53643.7808×10?132
    0.51.3633×10?645.8753×10?643?1.0847×1046.3442×1025?10.35649.7075×10?15
    下載: 導出CSV

    表  7  h對SCADE的性能影響

    Table  7.   Influence of h on the SCADE performance

    hF2 (P=0)F8 (P=0.004)F23 (P=0)
    Average optimal valueStandard deviationRankAverage optimal valueStandard deviationRank Average optimal valueStandard deviationRank
    52.0355×10?1301.0958×10?1291?1.1898×1043.1830×1022?10.53643.1104×10?123
    107.6735×10?663.1669×10?662?1.1920×1042.7977×1021?10.53643.8374×10?151
    152.4968×10?421.2590×10?413?1.1830×1042.6020×1024?10.51600.11204
    202.1214×10?318.8367×10?314?1.1893×1043.2600×1023?10.51501.1756×10?15
    258.7347×10?243.4513×10?235?1.1804×1042.4240×1025?10.53647.4506×10?142
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022
    [2] Liu Y, Ma L. Sine cosine algorithm with nonlinear decreasing conversion parameter. Comput Eng Appl, 2017, 53(2): 1 doi: 10.3778/j.issn.1002-8331.1608-0349

    劉勇, 馬良. 轉換參數非線性遞減的正弦余弦算法. 計算機工程與應用, 2017, 53(2):1 doi: 10.3778/j.issn.1002-8331.1608-0349
    [3] Xu S J, Long W. Improved sine cosine algorithm for solving high-dimensional optimization problems. Appl Res Comput, 2018, 35(9): 2574 doi: 10.3969/j.issn.1001-3695.2018.09.003

    徐松金, 龍文. 求解高維優化問題的改進正弦余弦算法. 計算機應用研究, 2018, 35(9):2574 doi: 10.3969/j.issn.1001-3695.2018.09.003
    [4] Shi B. A Modified Sine-Cosine Algorithm for Solving Optimization Problems[Dissertation]. Wuhan: Wuhan University, 2018

    石磊. 一種改進的正弦余弦優化算法[學位論文]. 武漢: 武漢大學, 2018
    [5] Yu K, Jiao Q L, Liu Z L, et al. Positioning of characteristic spectral peaks based on improved sine cosine algorithm. Acta Opt Sin, 2019, 39(9): 403

    于坤, 焦青亮, 劉子龍, 等. 基于改進正弦余弦算法的光譜特征峰定位方法. 光學學報, 2019, 39(9):403
    [6] Guo W Y, Wang Y, Dai F, et al. Alternating sine cosine algorithm based on elite chaotic search strategy. Control Decis, 2019, 34(8): 1654

    郭文艷, 王遠, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法. 控制與決策, 2019, 34(8):1654
    [7] Fang X Y, Wu X J, You D T. Sine cosine algorithm with learning mechanism. Appl Res Comput, 2020, 37(3): 809

    方旭陽, 武相軍, 游大濤. 具有學習機制的正弦余弦算法. 計算機應用研究, 2020, 37(3):809
    [8] Xu M, Jiao J J, Long W. Sine cosine algorithm based on Logistic model and stochastic differential mutation. Comput Sci, 2020, 47(2): 206 doi: 10.11896/jsjkx.181102197

    徐明, 焦建軍, 龍文. 基于Logistic模型和隨機差分變異的正弦余弦算法. 計算機科學, 2020, 47(2):206 doi: 10.11896/jsjkx.181102197
    [9] Lang C B, Jia H M, Xing Z K, et al. Multi-threshold image segmentation based on improved sine cosine optimization algorithm. Appl Res Comput, 2020, 37(4): 1215

    郎春博, 賈鶴鳴, 邢致愷, 等. 基于改進正余弦優化算法的多閾值圖像分割. 計算機應用研究, 2020, 37(4):1215
    [10] Gupta S, Deep K. Improved sine cosine algorithm with crossover scheme for global optimization. Knowl-Based Syst, 2019, 165: 374 doi: 10.1016/j.knosys.2018.12.008
    [11] Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl, 2019, 119: 210 doi: 10.1016/j.eswa.2018.10.050
    [12] Kumar L, Bharti K K. A novel hybrid BPSO-SCA approach for feature selection. Nat Comput, 2019 doi: 10.1007/s11047-019-09769-z
    [13] Guo W Y, Wang Y, Zhao F Q, et al. Riesz fractional derivative Elite-guided sine cosine algorithm. Appl Soft Comput, 2019, 81: 105481 doi: 10.1016/j.asoc.2019.04.044
    [14] Mouhoub Belazzoug, Mohamed Touahria, Farid Nouioua, et al. An improved sine cosine algorithm to select features for text categorization. King Saud University - Computer and Information Sciences, 2020, 32(4): 454 doi: 10.1016/j.jksuci.2019.07.003
    [15] Guo W Y, Wang Y, Dai F, et al. Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy. Eng Appl Artif Intell, 2020, 94: 103779 doi: 10.1016/j.engappai.2020.103779
    [16] Chen H, Heidari A A, Zhao X H, et al. Advanced orthogonal learning-driven multi-swarm sine cosine optimization: framework and case studies. Expert Syst Appl, 2020, 144: 113113 doi: 10.1016/j.eswa.2019.113113
    [17] Chen H L, Wang M J, Zhao X H. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput, 2020, 369: 124872
    [18] Wang M W, Wu C M, Chen M L, et al. A band selection approach based on Lévy sine cosine algorithm and alternative distribution for hyperspectral image. Int J Remote Sens, 2020, 41(9): 3429 doi: 10.1080/01431161.2019.1706010
    [19] Wang J C, Li Q, Cui J R, et al. An improved artificial bee colony algorithm: particle bee colony. Chin J Eng, 2018, 40(07): 871

    王繼超, 李擎, 崔家瑞, 等. 一種改進的人工蜂群算法——粒子蜂群算法. 工程科學學報, 2018, 40(07):871
    [20] Zhang C, Li Q, Wang W Q, et al. Immune particle swarm optimization algorithm based on the adaptive search strategy. Chin J Eng, 2017, 39(1): 125

    張超, 李擎, 王偉乾, 等. 基于自適應搜索的免疫粒子群算法. 工程科學學報, 2017, 39(1):125
    [21] Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. J Univ Sci Technol Beijing, 2013, 35(7): 955

    張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955
    [22] Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3(2): 82 doi: 10.1109/4235.771163
    [23] Eberhart R, Kennedy J. A new optimizer using particle swarm theory // Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995: 39
    [24] Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Global Optim, 1997, 11(4): 341 doi: 10.1023/A:1008202821328
    [25] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Global Optim, 2007, 39(3): 459 doi: 10.1007/s10898-007-9149-x
    [26] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput, 2008, 8(1): 687 doi: 10.1016/j.asoc.2007.05.007
  • 加載中
圖(2) / 表(7)
計量
  • 文章訪問數:  1318
  • HTML全文瀏覽量:  900
  • PDF下載量:  69
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-26
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回