[1] |
Hassani H, Silva E S. Big Data: a big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev, 2018, 42(1): 74 doi: 10.1111/opec.12118
|
[2] |
Li D W, Xiong H P, Shi G R, et al. Preprocessing of the data tapping based on global typical oil and gas field database. Pet Geol Oilfield Dev Daqing, 2016, 35(1): 66 doi: 10.3969/J.ISSN.1000-3754.2016.01.013李大偉, 熊華平, 石廣仁, 等. 基于全球典型油氣田數據庫的數據挖掘預處理. 大慶石油地質與開發, 2016, 35(1):66 doi: 10.3969/J.ISSN.1000-3754.2016.01.013
|
[3] |
Lynch C. How do your data grow? Nature, 2008, 455(7209): 28 doi: 10.1038/455028a
|
[4] |
Los W, Wood J. Dealing with data: Upgrading infrastructure. Science, 2011, 331(6024): 1515
|
[5] |
Li D W, Shi G R. Optimization of common data mining algorithms for petroleum exploration and development. Acta Pet Sinica, 2018, 39(2): 240 doi: 10.7623/syxb201802013李大偉, 石廣仁. 油氣勘探開發常用數據挖掘算法優選. 石油學報, 2018, 39(2):240 doi: 10.7623/syxb201802013
|
[6] |
Liu W, Yan N. Application and influence of artificial intelligence in petroleum engineering area. Oil Forum, 2018, 37(4): 32 doi: 10.3969/j.issn.1002-302x.2018.04.006劉偉, 閆娜. 人工智能在石油工程領域應用及影響. 石油科技論壇, 2018, 37(4):32 doi: 10.3969/j.issn.1002-302x.2018.04.006
|
[7] |
Lin B T, Guo J C. Discussion on current application of artificial intelligence in petroleum industry. Pet Sci Bull, 2019, 4(4): 403林伯韜, 郭建成. 人工智能在石油工業中的應用現狀探討. 石油科學通報, 2019, 4(4):403
|
[8] |
Zeng T, Zhang B C. Experiences and enlightenments of digital transformation of international oil service companies. Int Petrol Econom, 2019, 27(7): 39 doi: 10.3969/j.issn.1004-7298.2019.07.006曾濤, 張弼弛. 國際油服公司數字化轉型經驗與啟示. 國際石油經濟, 2019, 27(7):39 doi: 10.3969/j.issn.1004-7298.2019.07.006
|
[9] |
Bravo C E. Digital transformation for oil & gas production operations: Voice of the Oilfield? technology[J/OL]. Halliburton Landmark (2018)[2020-07-07]. https://innovationisrael.org.il/sites/default/files/04%20Sebastian%20Kroczka%20Halliburton.pdf
|
[10] |
Bryant R E, Katz R H, Lazowska E D. Big-data computing: creating revolutionary breakthroughs in commerce, science and society[J/OL]. Computing Community Consortium (2008-12-22)[2020-07-07]. http://acrhive2.cra.org/ccc/files/docs/init/Big_Data.pdf
|
[11] |
Meng X F, Ci X. Big data management: concepts, technology and challenges. J Comput Res Dev, 2013, 50(1): 146 doi: 10.7544/issn1000-1239.2013.20121130孟小峰, 慈祥. 大數據管理: 概念, 技術與挑戰. 計算機研究與發展, 2013, 50(1):146 doi: 10.7544/issn1000-1239.2013.20121130
|
[12] |
Baaziz A, Quoniam L. How to use big data technologies to optimize operations in upstream petroleum industry. Int J Innov, 2015, 1(1): 19
|
[13] |
Hamzeh H. Application of Big Data in Petroleum Industry[J/OL]. ResearchGate (2016-01-12)[2020-07-07]. https://www.academia.edu/27175616/Application_of_Big_Data_in_Petroleum_Industry_Application_of_Big_Data_in_Petroleum_Industry
|
[14] |
Su J, Liu H. Challenges and development of big data application in petroleum engineering. J China Univ Petrol Ed Social Sci, 2020, 36(3): 1蘇健, 劉合. 石油工程大數據應用的挑戰與發展. 中國石油大學學報(社會科學版), 2020, 36(3):1
|
[15] |
Jiang J M, Younis R M. Hybrid coupled discrete-fracture/matrix and multicontinuum models for unconventional-reservoir simulation. SPE J, 2016, 21(3): 1009 doi: 10.2118/178430-PA
|
[16] |
Ghassemi A, Pak A. Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method. J Pet Sci Eng, 2011, 77(1): 135 doi: 10.1016/j.petrol.2011.02.007
|
[17] |
Wang S, Javadpour F, Feng Q H. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 2016, 171: 74 doi: 10.1016/j.fuel.2015.12.071
|
[18] |
Liao F Y, Hong X H, Wang Y, et al. The data and computing platform is an important infrastructure which drives modern scientific research development. Front Data Comput, 2019, 1(1): 2廖方宇, 洪學海, 汪洋, 等. 數據與計算平臺是驅動當代科學研究發展的重要基礎設施. 數據與計算發展前沿, 2019, 1(1):2
|
[19] |
Shvachko K, Kuang H R, Radia S, et al. The Hadoop distributed file system // 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). Incline Village, 2010: 1
|
[20] |
Vavilapalli V K, Murthy A C, Douglas C, et al. Apache Hadoop YARN: yet another resource negotiator // Proceedings of the 4th Annual Symposium on Cloud Computing. California, 2013: 5
|
[21] |
Moon S, Lee J, Kee Y S. Introducing SSDs to the Hadoop MapReduce framework // 2014 IEEE 7th International Conference on Cloud Computing. Anchorage, 2014: 272
|
[22] |
Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing with working sets. HotCloud. 2010: 95
|
[23] |
Toshniwal A, Taneja S, Shukla A, et al. Storm@ twitter // Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. Snowbird, 2014: 147
|
[24] |
da Silva Morais T. Survey on frameworks for distributed computing: Hadoop, spark and storm // Proceedings of the 10th Doctoral Symposium in Informatics Engineering-DSIE'15. Porto, 2015: 95
|
[25] |
Li G X, Wang F, Pi X J, et al. Optimized application of geology-engineering integration data of unconventional oil and gas reservoirs. China Pet Explor, 2019, 24(2): 147李國欣, 王峰, 皮學軍, 等. 非常規油氣藏地質工程一體化數據優化應用的思考與建議. 中國石油勘探, 2019, 24(2):147
|
[26] |
Hao S, Tang N, Li G L, et al. A novel cost-based model for data repairing. IEEE Trans Knowl Data Eng, 2017, 29(4): 727 doi: 10.1109/TKDE.2016.2637928
|
[27] |
Wang J N, Tang N. Towards dependable data repairing with fixing rules // Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. Snowbird, 2014: 457
|
[28] |
Rekatsinas T, Chu X, Ilyas I F, et al. HoloClean: Holistic data repairs with probabilistic inference. arXiv preprint (2017-02-02)[2020-07-07]. https://arxiv.org/abs/1702.00820
|
[29] |
He J, Veltri E, Santoro D, et al. Interactive and deterministic data cleaning // Proceedings of the 2016 International Conference on Management of Data. San Francisco, 2016: 893
|
[30] |
Aliyuda K, Howell J, Humphrey E. Impact of geological variables in controlling oil-reservoir performance: An insight from a machine-learning technique. SPE Reservoir Eval Eng, 2020, 23(4): 1314 doi: 10.2118/201196-PA
|
[31] |
Ahmadi M A, Bahadori A. A LSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel, 2015, 153: 276 doi: 10.1016/j.fuel.2015.02.094
|
[32] |
Al-anazi A F, Gates I D. Support-vector regression for permeability prediction in a heterogeneous reservoir: A comparative study. SPE Reservoir Eval Eng, 2010, 13(3): 485 doi: 10.2118/126339-PA
|
[33] |
Shi G R. Superiorities of support vector machine in fracture prediction and gassiness evaluation. Pet Explor Dev, 2008, 35(5): 588 doi: 10.3321/j.issn:1000-0747.2008.05.010石廣仁. 支持向量機在裂縫預測及含氣性評價應用中的優越性. 石油勘探與開發, 2008, 35(5):588 doi: 10.3321/j.issn:1000-0747.2008.05.010
|
[34] |
El-Sebakhy E A. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems. Comput Geosci, 2009, 35(9): 1817 doi: 10.1016/j.cageo.2007.10.016
|
[35] |
Patel A N, Davis D, Guthrie C F, et al. Optimizing cyclic steam oil production with genetic algorithms // SPE Western Regional Meeting: Society of Petroleum Engineers. Irvine, 2005: SPE-93906-MS
|
[36] |
Bian X B, Zhang S C, Zhang J C, et al. Well spacing design for low and ultra-low permeability reservoirs developed by hydraulic fracturing. Pet Explor Dev, 2015, 42(5): 646 doi: 10.1016/S1876-3804(15)30059-8卞曉冰, 張士誠, 張景臣, 等. 壓裂投產低—特低滲透油藏井排距設計. 石油勘探與開發, 2015, 42(5):646 doi: 10.1016/S1876-3804(15)30059-8
|
[37] |
Siavashi M, Tehrani M R, Nakhaee A. Efficient particle swarm optimization of well placement to enhance oil recovery using a novel streamline-based objective function. J Energy Resour Technol, 2016, 138(5): 052903 doi: 10.1115/1.4032547
|
[38] |
Ding S W, Jiang H Q, Li J J, et al. Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method. Comput Geosci, 2014, 18(5): 747 doi: 10.1007/s10596-014-9422-2
|
[39] |
Ahmadi M A, Zendehboudi S, Lohi A, et al. Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophys Prospect, 2013, 61(3): 582 doi: 10.1111/j.1365-2478.2012.01080.x
|
[40] |
Ran Q Q, Li S L, Li Y Y. Identification of sedimentary microfacies with an artificial neural network model. Pet Explor Dev, 1995, 22(2): 59 doi: 10.3321/j.issn:1000-0747.1995.02.009冉啟全, 李士倫, 李元元. 用神經網絡模式識別沉積微相. 石油勘探與開發, 1995, 22(2):59 doi: 10.3321/j.issn:1000-0747.1995.02.009
|
[41] |
Wu X G, Ge J L. The application of artificial neural network in predicting output of oil fields. Pet Explor Dev, 1994, 21(3): 75吳新根, 葛家理. 應用人工神經網絡預測油田產量. 石油勘探與開發, 1994, 21(3):75
|
[42] |
Liu X P, Wang Q S, Tang J. An application of neural network in developing a model for predicting flowing bottomhole pressure of flowing wells. Pet Explor Dev, 1997, 24(5): 92 doi: 10.3321/j.issn:1000-0747.1997.05.023劉想平, 汪崎生, 湯軍. 用神經網絡建立自噴井井底流壓預測模型. 石油勘探與開發, 1997, 24(5):92 doi: 10.3321/j.issn:1000-0747.1997.05.023
|
[43] |
Song Z Q, Tan C Q, Wu S B, et al. Application of grey system theory and neural network technology to wateredout formation logging evaluation. Pet Explor Dev, 1999, 26(3): 110宋子齊, 譚成仟, 吳少波, 等. 灰色系統與神經網絡技術在水淹層測井評價中的應用. 石油勘探與開發, 1999, 26(3):110
|
[44] |
Negash B M, Yaw A D. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection. Pet Explor Dev, 2020, 47(2): 357 doi: 10.1016/S1876-3804(20)60052-0Negash B M, Yaw A D. 基于人工神經網絡的注水開發油藏產量預測. 石油勘探與開發, 2020, 47(2):357 doi: 10.1016/S1876-3804(20)60052-0
|
[45] |
Carpenter C. Geology-driven estimated-ultimate-recovery prediction with deep learning. J Pet Technol, 2016, 68(5): 74 doi: 10.2118/0516-0074-JPT
|
[46] |
Korjani M M, Popa A S, Grijalva E, et al. Reservoir characterization using fuzzy kriging and deep learning neural networks // SPE Annual Technical Conference and Exhibition: Society of Petroleum Engineers. Dubai, 2016: 15
|
[47] |
You L J, Tan Q G, Kang Y L, et al. Reconstruction and prediction of capillary pressure curve based on particle swarm optimization-back propagation neural network method. Petroleum, 2018, 4(3): 268 doi: 10.1016/j.petlm.2018.03.004
|
[48] |
Wang A H, Zhang Y K, Gao J L, et al. Predicting rock compressibility by artificial neural network. Pet Explor Dev, 2003, 30(4): 105 doi: 10.3321/j.issn:1000-0747.2003.04.034王安輝, 張英魁, 高景龍, 等. 應用人工神經網絡方法確定巖石壓縮系數. 石油勘探與開發, 2003, 30(4):105 doi: 10.3321/j.issn:1000-0747.2003.04.034
|
[49] |
Wang S H, Chen Z, Chen S N. Applicability of deep neural networks on production forecasting in Bakken shale reservoirs. J Pet Sci Eng, 2019, 179: 112 doi: 10.1016/j.petrol.2019.04.016
|
[50] |
Li D L, Liu X L, Zha W S, et al. Automatic well test interpretation based on convolutional neural network for a radial composite reservoir. Pet Explor Dev, 2020, 47(3): 583李道倫, 劉旭亮, 查文舒, 等. 基于卷積神經網絡的徑向復合油藏自動試井解釋方法. 石油勘探與開發, 2020, 47(3):583
|
[51] |
Zhu L P, Li H Q, Yang Z G, et al. Intelligent logging lithological interpretation with convolution neural networks. Petrophysics, 2018, 59(6): 799
|
[52] |
Huang L, Dong X S, Clee T E. A scalable deep learning platform for identifying geologic features from seismic attributes. Lead Edge, 2017, 36(3): 249 doi: 10.1190/tle36030249.1
|
[53] |
He Y F, Liu Y L, Shao S, et al. Application of CNN-LSTM in gradual changing fault diagnosis of rod pumping system. Math Problems Eng, 2019, 2019: 4203821
|
[54] |
Wang X, He Y F, Li F J, et al. A working condition diagnosis model of sucker rod pumping wells based on big data deep learning // International Petroleum Technology Conference. Beijing, 2019: 10
|
[55] |
Zhang D X, Chen Y T, Meng J. Synthetic well logs generation via recurrent neural networks. Pet Explor Dev, 2018, 45(4): 598張東曉, 陳云天, 孟晉. 基于循環神經網絡的測井曲線生成方法. 石油勘探與開發, 2018, 45(4):598
|
[56] |
Tian C, Horne R N. Recurrent neural networks for permanent downhole gauge data analysis // SPE Annual Technical Conference and Exhibition: Society of Petroleum Engineers. San Antonio, 2017: 12
|
[57] |
Lu L, Zhang G Z, Zhao C. Reservoir thickness forecasting based on deep belief networks // International Geophysical Conference. Qingdao, 2017: 733
|
[58] |
Cao J X, Wu S K. Deep learning: Chance and challenge for deep gas reservoir identification // International Geophysical Conference. Qingdao, 2017: 711
|
[59] |
Carpenter C. Artificial intelligence improves seismic-image reconstruction. J Pet Technol, 2019, 71(10): 65 doi: 10.2118/1019-0065-JPT
|
[60] |
Li Q X, Luo Y N. Using GAN priors for ultrahigh resolution seismic inversion // SEG International Exposition and Annual Meeting. San Antonio, 2019: SEG-2019-3215520
|
[61] |
Zhang H J, Wang W, Wang X K, et al. An implementation of the seismic resolution enhancing network based on GAN // SEG International Exposition and Annual Meeting. San Antonio, 2019: SEG-2019-3216229
|
[62] |
Shi X J, Chen Z R, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting // 29th Annual Conference on Neural Information Processing Systems (NIPS 2015). Montreal, 2015: 802
|
[63] |
Xu P, Du R, Zhang Z B. Predicting pipeline leakage in petrochemical system through GAN and LSTM. Knowl-Based Syst, 2019, 175: 50 doi: 10.1016/j.knosys.2019.03.013
|
[64] |
Alakeely A, Horne R N. Simulating the behavior of reservoirs with convolutional and recurrent neural networks. SPE Reservoir Eval Eng, 2020, 23(3): 992 doi: 10.2118/201193-PA
|
[65] |
Lei L, Yu L, Xiong Z, et al. Convolutional recurrent neural networks based waveform classification in seismic facies analysis // SEG International Exposition and Annual Meeting. San Antonio, 2019: SEG-2019-3215237
|
[66] |
Anifowose F, Abdulraheem A. Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. J Nat Gas Sci Eng, 2011, 3(3): 505 doi: 10.1016/j.jngse.2011.05.002
|
[67] |
Amiri M, Ghiasi-Freez J, Golkar B, et al. Improving water saturation estimation in a tight shaly sandstone reservoir using artificial neural network optimized by imperialist competitive algorithm–A case study. J Pet Sci Eng, 2015, 127: 347 doi: 10.1016/j.petrol.2015.01.013
|
[68] |
Saemi M, Ahmadi M, Varjani A Y. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. J Pet Sci Eng, 2007, 59(1-2): 97 doi: 10.1016/j.petrol.2007.03.007
|
[69] |
LeCun Y, Bengio Y, Hinton G E. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
|
[70] |
Wu J L, Yin X L, Xiao H. Seeing permeability from images: fast prediction with convolutional neural networks. Sci Bull, 2018, 63(18): 1215 doi: 10.1016/j.scib.2018.08.006
|
[71] |
Alqahtani N, Armstrong R T, Mostaghimi P. Deep learning convolutional neural networks to predict porous media properties // SPE Asia Pacific Oil and Gas Conference and Exhibition: Society of Petroleum Engineers. Brisbane, 2018: SPE-191906-MS
|
[72] |
Du S Y, Wang R F, Wei C J, et al. The connectivity evaluation among wells in reservoir utilizing machine learning methods. IEEE Access, 2020, 8: 47209 doi: 10.1109/ACCESS.2020.2976910
|
[73] |
Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization. arXiv preprint (2015-02-19)[2020-07-07]. https://arxiv.org/abs/1409.2329
|
[74] |
Zhang Q T, Wei C J, Wang Y H, et al. Potential for prediction of water saturation distribution in reservoirs utilizing machine learning methods. Energies, 2019, 12(19): 3597 doi: 10.3390/en12193597
|