Current status and progress of path tracking control of mining articulated vehicles
-
摘要: 鉸接式車輛的路徑跟蹤控制是礦山自動化領域中的關鍵技術,而數學模型和路徑跟蹤控制方法是鉸接式車輛路徑跟蹤控制中的兩項重要研究內容。在數學模型研究中,鉸接式車輛的無側滑經典運動學模型較為適合作為低速路徑跟蹤控制的參考模型,而有側滑運動學模型作為參考模型時則可能導致側滑加劇。此外基于牛頓–歐拉法建立的鉸接式車輛四自由度動力學模型原則上滿足路徑跟蹤控制的需求,但是還需要解決當前的四自由度模型無法同時反映瞬態轉向特性和穩態轉向特性的問題。在路徑跟蹤控制方法研究中,反饋線性化控制、最優控制、滑模控制等無前饋信息的控制方法無法有效解決鉸接式車輛跟蹤存在較大幅度曲率突變的參考路徑時誤差較大的問題,前饋–反饋控制可以用于解決上述問題,但是在參考路徑具有不同幅度的曲率突變時需要解決自動調整預瞄距離的問題,而模型預測控制,尤其是非線性模型預測控制,可以更加有效地利用前饋信息,且不需要考慮預瞄距離的設置,從而可以有效提高鉸接式車輛跟蹤存在較大幅度曲率突變的參考路徑時的精確性。此外,對于基于非線性模型預測控制的鉸接式車輛路徑跟蹤控制,還需深化三個方面的研究。首先,該控制方法仍然存在誤差最大值隨參考速度增大而增加的趨勢。其次,目前該控制方法以運動學模型作為預測模型,無法解決鉸接式車輛以較高的參考速度運行時側向速度導致的精確性下降和安全性惡化的問題。最后,還需對這種控制方法進行實時性方面的優化研究。Abstract: Path tracking control of articulated vehicles is a focus in the field of mine automation. Mathematical models and path tracking control methods are two key focal points of research in this area. For mathematical models of articulated vehicles, the classic kinematics model without side-slip is suitable as a reference model for low-speed autonomous driving control. However, when this model is used as the reference model, it may lead to an intensification of sliding. In any event, the four-degree-of-freedom dynamic model of articulated vehicles based on the Newton–Euler method meets the requirements of autonomous driving control in principle. However, this model cannot reflect both transient and steady steering characteristics. In the research of path tracking control methods, feedback linearization control, optimal control, sliding mode control, and other control methods without feedforward information cannot effectively solve the problem of a large error when vehicle tracking a reference path with large abrupt changes in curvature. Feedforward–feedback control can be used to solve the above problem, but when the reference path has diverse amplitudes of abrupt changes in curvature, it is necessary to automatically adjust the preview distance. Model predictive control, especially nonlinear model predictive control, can use feedforward information more effectively and does not need to consider the setting of the preview distance. This way, when the articulated vehicle tracks a reference path with large abrupt changes in curvature, accuracy can be effectively improved. Additionally, for the path tracking control of articulated vehicles based on nonlinear model predictive control, three aspects of research need to be deepened. First, for this control method, there is still a trend that the maximum value of the error increases as the reference velocity increases. Second, currently, this control method uses the kinematics model as the prediction model, so it cannot solve the twin problems of reduced accuracy and worsened safety, caused by the lateral velocity when the articulated vehicle runs at a higher reference velocity. Finally, real-time optimization research on this control method is needed.
-
Key words:
- mining /
- vehicle /
- articulated /
- unmanned driving /
- path tracking /
- current status /
- progress
-
表 1 鉸接式車輛和控制器參數
Table 1. Parameters of the articulated vehicle and controllers
Parameter Value Distance between articulated point to
the front axle /m1.68 Distance between articulated point to
the rear axle /m3.44 Control period /s 0.05 Prediction horizon 40 Control horizon 1 Weight of errors 0.01I(I is unit matrix) Weight of control input increment 0.0005I(I is unit matrix) 259luxu-164 -
參考文獻
[1] Dragt B J, Camisani-Calzolari F R, Craig I K. An overview of the automation of load-haul-dump vehicles in an underground mining environment. IFAC Proc Vol, 2005, 38(1): 37 [2] Polotski V, Hemami A. Control of articulated vehicle for mining applications: modeling and laboratory experiments // Proceedings of the 1997 IEEE International Conference on Control Applications. Hartford, 1997: 318 [3] Polotski V. New reference point for guiding an articulated vehicle // Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, 2000: 455 [4] DeSantis R M. Modeling and path-tracking for a load-haul-dump mining vehicle. J Dyn Syst Meas Control, 1997, 119(1): 40 [5] Petrov P, Bigras P. A practical approach to feedback path control for an articulated mining vehicle // Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, 2001: 2258 [6] Bigras P, Petrov P, Wong T. A LMI approach to feedback path control for an articulated mining vehicle[J/OL]. Electrimacs (2002-08-18)[2020-07-10]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0E4BF7E2F4D6D72E947388D6E3000594?doi=10.1.1.93.6794&rep=rep1&type=pdf [7] Sasiadek J Z, Lu Y. Path tracking of an autonomous LHD articulated vehicle. IFAC Proc Vol, 2005, 38(1): 55 [8] Altafini C. Why to use an articulated vehicle in underground mining operations? // Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C). Detroit, 1999: 3020 [9] Corke P I, Ridley P. Steering kinematics for a center-articulated mobile robot. IEEE Trans Robot Autom, 2001, 17(2): 215 [10] Bai G X, Liu L, Meng Y, et al. Path tracking of mining vehicles based on nonlinear model predictive control. Appl Sci, 2019, 9(7): 1372 [11] Ridley P, Corke P. Load haul dump vehicle kinematics and control. J Dyn Syst Meas Control, 2003, 125(1): 54 [12] Marshall J, Barfoot T, Larsson J. Autonomous underground tramming for center-articulated vehicles. J Field Robot, 2008, 25(6-7): 400 [13] Zhao X, Yang J, Zhang W M, et al. Feedback linearization control for path tracking of articulated dump truck. Telkomnika, 2015, 13(3): 922 [14] Zhao X, Yang J, Zhang W M, et al. Sliding mode control algorithm for path tracking of articulated dump truck. Trans Chin Soc Agric Eng, 2015, 31(10): 198 doi: 10.11975/j.issn.1002-6819.2015.10.026趙翾, 楊玨, 張文明, 等. 農用輪式鉸接車輛滑模軌跡跟蹤控制算法. 農業工程學報, 2015, 31(10):198 doi: 10.11975/j.issn.1002-6819.2015.10.026 [15] Shao J K, Zhao X, Yang J, et al. Reinforcement learning algorithm for path following control of articulated vehicle. Trans Chin Soc Agric Mach, 2017, 48(3): 376 doi: 10.6041/j.issn.1000-1298.2017.03.048邵俊愷, 趙翾, 楊玨, 等. 無人駕駛鉸接式車輛強化學習路徑跟蹤控制算法. 農業機械學報, 2017, 48(3):376 doi: 10.6041/j.issn.1000-1298.2017.03.048 [16] Bian Y M, Yang M, Fang X J, et al. Kinematics and path following control of an articulated drum roller. Chin J Mech Eng, 2017, 30(4): 888 [17] Tan S Q, Zhao X X, Yang J, et al. A path tracking algorithm for articulated vehicle: Development and simulations // 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). Harbin, 2017: 1 [18] Meng Y, Wang Y, Gu Q, et al. LQR-GA path tracking control of articulated vehicle based on predictive information. Trans Chin Soc Agric Mach, 2018, 49(6): 375 doi: 10.6041/j.issn.1000-1298.2018.06.045孟宇, 汪鈺, 顧青, 等. 基于預見位姿信息的鉸接式車輛 LQR-GA 路徑跟蹤控制. 農業機械學報, 2018, 49(6):375 doi: 10.6041/j.issn.1000-1298.2018.06.045 [19] Meng Y, Gan X, Wang Y, et al. LQR-GA controller for articulated dump truck path tracking system. J Shanghai Jiaotong Univ (Sci) , 2019, 24(1): 78 [20] Dekker L G, Marshall J A, Larsson J. Experiments in feedback linearized iterative learning-based path following for center-articulated industrial vehicles. J Field Robot, 2019, 36(5): 955 [21] Scheding S, Dissanayake G, Nebot E, et al. Slip modelling and aided inertial navigation of an LHD // Proceedings of International Conference on Robotics and Automation. Albuquerque, 1997: 1904 [22] Scheding S, Dissanayake G, Nebot E M, et al. An experiment in autonomous navigation of an underground mining vehicle. IEEE Trans Robot Autom, 1999, 15(1): 85 [23] Nayl T, Nikolakopoulos G, Gustafsson T. Kinematic modeling and simulation studies of a LHD vehicle under slip angles // Proceedings of the IASTED international conference on modelling, simulation, and identification. Pittsburgh 2011: 344 [24] Nayl T, Nikolakopoulos G, Gustafsson T. Switching model predictive control for an articulated vehicle under varying slip angle // 2012 20th Mediterranean Conference on Control & Automation (MED). Barcelona, 2012: 890 [25] Nayl T, Nikolakopoulos G, Gustafsson T. Path following for an articulated vehicle based on switching model predictive control under varying speeds and slip angles // Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Krakow, 2012: 1 [26] Nayl T, Nikolakopoulos G, Gustafsson T. A full error dynamics switching modeling and control scheme for an articulated vehicle. Int J Control Autom Syst, 2015, 13(5): 1221 [27] Feng J Z, Yu F, Li J. Study of an articulated vehicle dynamic modeling based on virtual environment. J Univ Shanghai Sci Technol, 2004, 26(4): 372 doi: 10.3969/j.issn.1007-6735.2004.04.020馮金芝, 喻凡, 李君. 基于虛擬樣機技術的鉸接式車輛動力學建模. 上海理工大學學報, 2004, 26(4):372 doi: 10.3969/j.issn.1007-6735.2004.04.020 [28] Dudziński P, Skurjat A. Directional dynamics problems of an articulated frame steer wheeled vehicles. J KONES, 2015, 19(1): 89 [29] Shen Y H, Han L, Jin C. Co-simulation analysis of in-situ steering dynamics of articulated motor-driven vehicle. J Syst Simul, 2013, 25(7): 1691申焱華, 韓麗, 金純. 鉸接式電動輪原地轉向動力學聯合仿真分析. 系統仿真學報, 2013, 25(7):1691 [30] He Y, Khajepour A, McPhee J, et al. Dynamic modelling and stability analysis of articulated frame steer vehicles. Int J Heavy Veh Syst, 2005, 12(1): 28 [31] Gao J M, Wang T J, Xu J Y, et al. Simulation and experimental research on steering kinematics and dynamics of articulated loaders. Constr Mach, 2005(4): 63 doi: 10.3969/j.issn.1001-554X.2005.04.020高建明, 王同建, 徐進勇, 等. 鉸接式裝載機轉向運動學動力學仿真與試驗研究. 建筑機械, 2005(4):63 doi: 10.3969/j.issn.1001-554X.2005.04.020 [32] Wang J C. Dynamical mathematical model of in situ steering of articulated vehicles. Constr Mach, 2008(6): 86 doi: 10.3969/j.issn.1001-554X.2008.06.016汪建春. 鉸接式車輛原地轉向動態數學模型. 建筑機械, 2008(6):86 doi: 10.3969/j.issn.1001-554X.2008.06.016 [33] Wang J C. Mechanical model discussion and in-situ steering resistance moment computation of articulated vehicles. Min Process Equip, 2008, 36(21): 53汪建春. 鉸接式車輛原地轉向阻力矩計算及力學模型討論. 礦山機械, 2008, 36(21):53 [34] Chen Y F. Analysis and experiment on steering kinematics and dynamics of flame proof rubber tyre articulated vehicle. Coal Sci Technol, 2012, 40(7): 66陳永峰. 鉸接式防爆膠輪車轉向運動學動力學分析與試驗. 煤炭科學技術, 2012, 40(7):66 [35] Zhang T, Zhang F S, Zhang G F, et al. A research on in-situ steering characteristics of articulated vehicle based on MATLAB. Mod Mach, 2014(3): 22張濤, 張福生, 張高峰, 等. 基于MATLAB鉸接式車輛原地轉向特性的研究. 現代機械, 2014(3):22 [36] Xu T, Shen Y, Zhang W. In-situ steering dynamics analysis of skid steering for articulated motor-driven vehicle. SAE Int J Passeng Cars-Mech Syst, 2016, 9(2): 903 [37] Cui S M, Zhang J M, Zhang W C. Steady-state steering characteristics of articulated vehicles. Tract Farm Transp, 1995(3): 43崔勝民, 張京明, 張為春. 鉸接式車輛穩態轉向特性. 拖拉機與農用運輸車, 1995(3):43 [38] Azad N, Khajepour A, McPhee J. Stability control of articulated steer vehicles by passive and active steering systems. SAE Technical Paper, 2005: 2005-01-3573 doi: 10.4271/2005-01-3573 [39] Azad N, McPhee J, Khajepour A. Tire forces and moments and on-road lateral stability of articulated steer vehicles. SAE Technical Paper, 2005: 2005-01-3597 doi: 10.4271/2005-01-3597 [40] Azad N L. Dynamic Modelling and Stability Controller Development for Articulated Steer Vehicles[Dissertation]. University of Waterloo, 2006 [41] Wang J C, Liu W. Transient and steady responses of articulated vehicles to disturbance moment(I). Min Process Equip, 2008, 36(9): 26汪建春, 劉旺. 鉸接式車輛對擾動的瞬態和穩態響應(上). 礦山機械, 2008, 36(9):26 [42] Wang J C, Liu W. Transient and steady responses of articulated vehicles to disturbance moment (Ⅱ). Min Process Equip, 2008, 36(11): 35汪建春, 劉旺. 鉸接式車輛對擾動的瞬態和穩態響應(下). 礦山機械, 2008, 36(11):35 [43] Iida M, Fukuta M, Tomiyama H. Measurement and analysis of side-slip angle for an articulated vehicle. Eng Agric Environ Food, 2010, 3(1): 1 [44] Iida M, Nakashima H, Tomiyama H, et al. Small-radius turning performance of an articulated vehicle by direct yaw moment control. Comput Electron Agric, 2011, 76(2): 277 [45] Rehnberg A, Edrén J, Eriksson M, et al. Scale model investigation of the snaking and folding stability of an articulated frame steer vehicle. Int J Veh Syst Modell Test, 2011, 6(2): 126 [46] Pazooki A, Rakheja S, Cao D P. A three-dimensional model of an articulated frame-steer vehicle for coupled ride and handling dynamic analyses. Int J Veh Perform, 2015, 1(3-4): 264 [47] Pazooki A, Rakheja S, Cao D P. Kineto-dynamic directional response analysis of an articulated frame steer vehicle. Int J Veh Des, 2014, 65(1): 1 [48] Zhou G J. Steering and lateral stability dynamic mathematical model of articulated scraper. Min Process Equip, 1992(11): 9周國建. 鉸接式鏟運機轉向及橫向穩定動態數學模型. 礦山機械, 1992(11):9 [49] Zhou G J. Dynamic mathematical model of LHD steering. Min Res Dev, 1993, 13(4): 31周國建. 鏟運機轉向動態數學模型. 礦業研究與開發, 1993, 13(4):31 [50] Azad N, Khajepour A, Mcphee J. Robust state feedback stabilization of articulated steer vehicles. Veh Syst Dyn, 2007, 45(3): 249 [51] Dou F Q, Liu W, Huang Y J, et al. Modeling and path tracking for articulated steering vehicles// 2017 Chinese Automation Congress (CAC). Jinan, 2017: 5263 [52] Dou F Q. Research on Path Tracking and Obstacles Avoidance for Autonomous Underground Mining Articulated Vehicles [Dissertation]. Beijing: University of Science and Technology Beijing, 2018竇鳳謙. 地下礦用鉸接車輛路徑跟蹤與智能避障控制研究[學位論文]. 北京: 北京科技大學, 2018 [53] Gao Y, Shen Y H, Xu T, et al. Oscillatory yaw motion control for hydraulic power steering articulated vehicles considering the influence of varying bulk modulus. IEEE Trans Control Syst Technol, 2019, 27(3): 1284 [54] Liu G, Zhang Z D, Zou G D, et al. Dynamics model establishment for travel stability of articulated vehicles. Constr Mach Equip, 1996(8): 5劉剛, 張子達, 鄒廣德, 等. 鉸接車輛行駛穩定性的動力學建模. 工程機械, 1996(8):5 [55] Ge Q S, Guo G, Hua R P, et al. Dynatdic mathematical model of steering and horizontal swing for athculated vehicles. Min Process Equip, 2000, 28(6): 29葛強勝, 郭剛, 華瑞平, 等. 鉸接式車輛轉向及橫向動態數學模型. 礦山機械, 2000, 28(6):29 [56] Ge Q S. Simulation of high-speed and straight-line traveling dynamic characteristics of articulated vehicles. Trans Chin Soc Agric Mach, 2003, 34(4): 39 doi: 10.3969/j.issn.1000-1298.2003.04.012葛強勝. 鉸接式車輛高速直線行駛動態仿真. 農業機械學報, 2003, 34(4):39 doi: 10.3969/j.issn.1000-1298.2003.04.012 [57] Alshaer B J, Darabseh T T, Momani A Q. Modelling and control of an autonomous articulated mining vehicle navigating a predefined path. Int J Heavy Veh Syst, 2014, 21(2): 152 [58] Hemami A, Polotski V. Problem formulation for path tracking automation of low speed articulated vehicles // Proceeding of the 1996 IEEE International Conference on Control Applications. Dearborn, 1996: 697 [59] Hemami A, Polotski V. Path tracking control problem formulation of an LHD loader. Int J Robot Res, 1998, 17(2): 193 [60] Nayl T, Nikolakopoulos G, Gustafsson T, et al. Design and experimental evaluation of a novel sliding mode controller for an articulated vehicle. Robot Autonom Syst, 2018, 103: 213 [61] Liu J K. Sliding Mode Control Design and MATLAB Simulation (3rd Ed) the Basic Theory and Design Method. Beijing: Tsinghua University Press, 2015劉金琨. 滑模變結構控制MATLAB仿真 (第3版) 基本理論與設計方法. 北京: 清華大學出版社, 2015 [62] Liu J K. Intelligent Control. 4th Ed. Beijing: Electronic Industry Press, 2017劉金琨. 智能控制. 4版. 北京: 電子工業出版社, 2017 [63] Consolini L, Piazzi A, Tosques M. A dynamic inversion based controller for path following of car-like vehicles. IFAC Proc Vol, 2002, 35(1): 49 [64] Kapania N R, Gerdes J C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling. Veh Syst Dyn, 2015, 53(12): 1687 [65] Chen H. Model Predictive Control. Beijing: Science Press, 2013陳虹. 模型預測控制. 北京: 科學出版社, 2013 [66] Meng Y, Gan X, Bai G X. Path following control of underground mining articulated vehicle based on the preview control method. Chin J Eng, 2019, 41(5): 662孟宇, 甘鑫, 白國星. 基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制. 工程科學學報, 2019, 41(5):662 [67] Luo W D, Ma B Q, Meng Y, et al. Reactive navigation system of underground unmanned Load-Haul-Dump unit based on NMPC. J China Coal Soc, 2020, 45(4): 1536羅維東, 馬寶全, 孟宇, 等. 基于NMPC的地下無人鏟運機反應式導航系統. 煤炭學報, 2020, 45(4):1536 [68] Bai G X, Meng Y, Liu L, et al. Review and comparison of path tracking based on model predictive control. Electronics, 2019, 8(10): 1077 [69] Gu Q, Bai G X, Meng Y, et al. Path tracking of automatic parking based on nonlinear model predictive control. Chin J Eng, 2019, 41(7): 947顧青, 白國星, 孟宇, 等. 基于非線性模型預測控制的自動泊車路徑跟蹤. 工程科學學報, 2019, 41(7):947 [70] Bai G X, Liu L, Meng Y, et al. Path tracking of wheeled mobile robots based on dynamic prediction model. IEEE Access, 2019, 7: 39690 [71] Bai G X, Meng Y, Liu L, et al. A new path tracking method based on multilayer model predictive control. Appl Sci, 2019, 9(13): 2649 [72] Falcone P, Tseng H E, Asgari J, et al. Integrated braking and steering model predictive control approach in autonomous vehicles. IFAC Proc Vol, 2007, 40(10): 273 [73] Falcone P, Tufo M, Borrelli F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems // 2007 46th IEEE Conference on Decision and Control. New Orleans, 2007: 2980 [74] Barbarisi O, Palmieri G, Scala S, et al. LTV-MPC for yaw rate control and side slip control with dynamically constrained differential braking. Eur J Control, 2009, 15(3-4): 468 [75] Meola D, Gambino G, Palmieri G, et al. A comparison between LTV-MPC and LQR yaw rate-side slip controller. IFAC Proc Vol, 2009, 42(26): 154 [76] Ataei M, Khajepour A, Jeon S. Model predictive control for integrated lateral stability, traction/braking control, and rollover prevention of electric vehicles. Veh Syst Dyn, 2020, 58(1): 49 -