<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

水合物法分離氣體的促進劑及促進機理研究進展

王蘭云 謝輝龍 盧曉冉 徐永亮 王燕 李瑤 魏建平

王蘭云, 謝輝龍, 盧曉冉, 徐永亮, 王燕, 李瑤, 魏建平. 水合物法分離氣體的促進劑及促進機理研究進展[J]. 工程科學學報, 2021, 43(1): 33-46. doi: 10.13374/j.issn2095-9389.2020.07.06.004
引用本文: 王蘭云, 謝輝龍, 盧曉冉, 徐永亮, 王燕, 李瑤, 魏建平. 水合物法分離氣體的促進劑及促進機理研究進展[J]. 工程科學學報, 2021, 43(1): 33-46. doi: 10.13374/j.issn2095-9389.2020.07.06.004
WANG Lan-yun, XIE Hui-long, LU Xiao-ran, XU Yong-liang, WANG Yan, LI Yao, WEI Jian-ping. Research progress of promoters and promoting mechanisms for hydrate-based gas separation[J]. Chinese Journal of Engineering, 2021, 43(1): 33-46. doi: 10.13374/j.issn2095-9389.2020.07.06.004
Citation: WANG Lan-yun, XIE Hui-long, LU Xiao-ran, XU Yong-liang, WANG Yan, LI Yao, WEI Jian-ping. Research progress of promoters and promoting mechanisms for hydrate-based gas separation[J]. Chinese Journal of Engineering, 2021, 43(1): 33-46. doi: 10.13374/j.issn2095-9389.2020.07.06.004

水合物法分離氣體的促進劑及促進機理研究進展

doi: 10.13374/j.issn2095-9389.2020.07.06.004
基金項目: 國家自然科學基金資助項目(51874124,52074108);中國博士后科學基金特別資助項目(2018T110725);河南理工大學杰出青年基金資助項目(J2019-5);河南省高等院校重點科研資助項目(19A440009)
詳細信息
    通訊作者:

    E-mail:xylcumt@hpu.edu.cn

  • 中圖分類號: TQ028.8

Research progress of promoters and promoting mechanisms for hydrate-based gas separation

More Information
  • 摘要: 目前添加促進劑后水合物形成機理并無統一定論,本文詳細闡述了氣體水合物形成的降低表面張力理論、臨界膠束理論、毛細效應理論、模板效應理論和表面疏水效應理論等促進機理,綜述了傳統促進劑(THF、CP、SDS)、生物環保型促進劑(氨基酸、淀粉),尤其是離子液體在氣體水合物形成相平衡實驗、動力學規律和促進機理方面的應用研究進展,闡述了離子液體半籠型水合促進劑在混合氣體分離方面的研究現狀,指出應從促進劑結構性質及其在水相中的聚集形態入手,研究促進劑?氣體?水之間的分子間作用力,建立各類氣體水合物促進劑的篩選體系。

     

  • 圖  1  CH4、N2、CO2、O2及H2S在純水中生成水合物的相平衡條件[19-21]

    Figure  1.  Hydrate equilibrium curve of CH4, N2, CO2, O2, and H2S in pure water[19-21]

    圖  2  水合物法分離低濃度瓦斯原理

    Figure  2.  Hydrate-based gas separation principle for low-concentration coalbed-mine methane

    圖  3  降低表面張力理論示意圖

    Figure  3.  Schematic of reducing surface tension theory

    圖  4  SDS的膠束模型示意圖(a)[26] 與毛細效應理論示意圖(b)[32]

    Figure  4.  Schematic of SDS micelle models (a)[26] and schematic of capillary theory (b)[32]

    圖  5  ZIF-61模板效應促進THF水合物的成核(a)[36] 以及SAP與水形成的環狀結構(b)[37]

    Figure  5.  Promotion of THF hydrate nucleation by ZIF-61 due to template effect (a)[36], and ring structure formed by SAP and water (b)[37]

    圖  6  固體表面疏水理論示意圖[41]

    Figure  6.  Schematic of surface hydrophobicity theory[41]

    圖  7  氨基酸通過氫鍵嵌入水合物晶體結構示意圖[66]

    Figure  7.  Incorporation of amino acids into hydrate crystal lattice through hydrogen bonding[66]

    圖  8  玉米淀粉分子結構示意圖(a)[70]與β-環糊精結構示意圖(b)

    Figure  8.  Schematic of the molecular structure of maize starch (a)[70] and schematic of β-cyclodextrin structure (b)

    圖  9  TiAAB?38H2O半水合物晶體結構圖。(a)藍色:容納CH4或Kr的A型籠;(b)綠色:容納水分子的B型籠

    Figure  9.  Crystal structure of TiAAB·38H2O hydrate: (a) blue: A-cage hosting CH4 or Kr; (b) green: B-cage hosting a water molecule

    圖  10  不同離子液體存在下CO2,CH4,N2水合物相平衡圖[90-91], 其中[P4 4 4 4]Br,[N4 4 4 4]Br的質量分數都為10%

    Figure  10.  Phase equilibrium diagram of CO2, CH4, and N2 hydrates in the presence of different ionic liquids[90-91], the mass fraction of [P4 4 4 4]Br and [N4 4 4 4]Br is 10%

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China. Energy Geosci, 2020, 1(1-2): 55
    [2] Zang X Y, Liang D Q, Wu N Y. Research progress in hydrate-based carbon dioxide separation from natural gas/biogas. Mod Chem Ind, 2015, 35(2): 13

    臧小亞, 梁德青, 吳能友. 基于水合物技術分離天然氣/沼氣中CO2的研究進展. 現代化工, 2015, 35(2):13
    [3] Gu H M, Song G H, Xiao J, et al. Thermodynamic analysis of the biomass-to-synthetic natural gas using chemical looping technology with CaO sorbent. Energy Fuels, 2013, 27(8): 4695
    [4] Chen Q, Liu T B. Biogas system in rural China: Upgrading from decentralized to centralized? Renewable Sustainable Energy Rev, 2017, 78: 933
    [5] Yuan L. Scientific thinking and countermeasures of coalbed methane development and utilization in China. Sci Technol Rev, 2011, 29(22): 3

    袁亮. 我國煤層氣開發利用的科學思考與對策. 科技導報, 2011, 29(22):3
    [6] Qu S J, Dong W G, Li X F, et al. Research and application of the low concentrated coal bed methane upgrading technique. J China Coal Soc, 2014, 39(8): 1539

    曲思建, 董衛國, 李雪飛, 等. 低濃度煤層氣脫氧濃縮工藝技術開發與應用. 煤炭學報, 2014, 39(8):1539
    [7] Liu J Z, Sun H T, Lei Y, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. J China Coal Soc, 2020, 45(1): 258

    劉見中, 孫海濤, 雷毅, 等. 煤礦區煤層氣開發利用新技術現狀及發展趨勢. 煤炭學報, 2020, 45(1):258
    [8] Li Y L, Liu Y S, Yang X, et al. Safety analysis on low concentration coal bed methane enrichment process by proportion pressure swing adsorption. J China Coal Soc, 2012, 37(5): 804

    李永玲, 劉應書, 楊雄, 等. 等比例變壓吸附法富集低濃度煤層氣的安全性分析. 煤炭學報, 2012, 37(5):804
    [9] Al-Rabiah A A, Ajbar A M, Soliman M A, et al. Modeling of nitrogen separation from natural gas through nanoporous carbon membranes. J Nat Gas Sci Eng, 2015, 26: 1278
    [10] Hadri N E, Quang D V, Goetheer E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl Energy, 2017, 185: 1433
    [11] Chen J H, Xiao L, Ling H L. Study on cryogenic liquefaction technique of low concentration coalbed methane. Coal Sci Technol, 2016, 44(6): 134

    陳金華, 肖露, 令狐磊. 低濃度煤層氣深冷液化工藝研究. 煤炭科學技術, 2016, 44(6):134
    [12] Li W, Wang Z, Li P Y, et al. Progress in membrane technology for CH4-N2 separation. CIESC J, 2016, 67(2): 404

    李雯, 王志, 李潘源, 等. 用于甲烷-氮氣體系分離的膜技術研究進展. 化工學報, 2016, 67(2):404
    [13] Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology. Beijing: Chemical Industry Press, 2008

    陳光進, 孫長宇, 馬慶蘭. 氣體水合物科學與技術. 北京: 化學工業出版社, 2008
    [14] Sloan E D. Fundamental principles and applications of natural gas hydrates. Nature, 2003, 426: 353
    [15] Sloan E D, Koh C A, Koh C. Clathrate Hydrates of Natural Gases. 3rd Ed. Florida: CRC Press, 2007
    [16] Li A R, Jiang L L, Tang S Y. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor. Energy, 2017, 134: 629
    [17] Park S S, Kim N J. Study on methane hydrate formation using ultrasonic waves. J Ind Eng Chem, 2013, 19(5): 1668
    [18] Wang X L, Dennis M. Charging performance of a CO2 semi-clathrate hydrate based PCM in a lab-scale cold storage system. Appl Therm Eng, 2017, 126: 762
    [19] Adisasmito S, Frank R J, Sloan E D. Hydrates of carbon dioxide and methane mixtures. J Chem Eng Data, 1991, 36(1): 68
    [20] Mohammadi A H, Tohidi, B, Burgass R W. Equilibrium data and thermodynamic modeling of nitrogen, oxygen, and air clathrate hydrates. J Chem Eng Data, 2003, 48(3): 612
    [21] Ward Z T, Deering C E, Marriott R A, et al. Phase equilibrium data and model comparisons for H2S hydrates. J Chem Eng Data, 2015, 60(2): 403
    [22] Dicharry C, Duchateau C, Asbai H, et al. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution. Chem Eng Sci, 2013, 98: 88
    [23] Li Y X, Zhu C, Wang W C. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics. Petrochem Technol, 2012, 41(6): 699 doi: 10.3969/j.issn.1000-8144.2012.06.015

    李玉星, 朱超, 王武昌. 表面活性劑促進CO2水合物生成的實驗及動力學模型. 石油化工, 2012, 41(6):699 doi: 10.3969/j.issn.1000-8144.2012.06.015
    [24] Zhang Q D, Li Y X, Wang W C. Influence of chemical additives on hydrate formation and gas storage. Chem Eng Oil Gas, 2014, 43(2): 146 doi: 10.3969/j.issn.1007-3426.2014.02.008

    張慶東, 李玉星, 王武昌. 化學添加劑對水合物生成和儲氣的影響. 石油與天然氣化工, 2014, 43(2):146 doi: 10.3969/j.issn.1007-3426.2014.02.008
    [25] Zhang B Y, Wu Q, Wang Y J. Reaction mechanism between surfactant and induction of gas hydrate formation. J Jilin Univ Eng Technol Ed, 2007, 37(1): 239

    張保勇, 吳強, 王永敬. 表面活性劑對氣體水合物生成誘導時間的作用機理. 吉林大學學報(工學版), 2007, 37(1):239
    [26] Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation. Chem Eng Sci, 2000, 55(19): 4175
    [27] Wang F, Jia Z Z, Luo S J, et al. Effects of different anionic surfactants on methane hydrate formation. Chem Eng Sci, 2015, 137: 896
    [28] Veluswamy H P, Chen J Y, Linga P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chem Eng Sci, 2015, 126: 488
    [29] Profio P D, Arca S, Germani R, et al. Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved? Chem Eng Sci, 2005, 60(15): 4141
    [30] Gayet P, Dicharry C, Marion G, et al. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chem Eng Sci, 2005, 60(21): 5751
    [31] Lo C, Zhang J S, Somasundaran P, et al. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy. J Colloid Interface Sci, 2012, 376(1): 173
    [32] Meng H L, Guo R B, Wang F, et al. Effect of different surfactants on methane hydrate formation. Renewable Energy Resour, 2017, 35(3): 329

    孟漢林, 郭榮波, 王飛, 等. 不同表面活性劑對甲烷水合物生成的影響. 可再生能源, 2017, 35(3):329
    [33] Yoslim J, Linga P, Englezos P. Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants. J Cryst Growth, 2010, 313(1): 68
    [34] Zhang J S, Lee S, Lee J W. Kinetics of methane hydrate formation from SDS solution. Ind Eng Chem Res, 2007, 46(19): 6353
    [35] Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel, 2019, 235: 1400
    [36] Wang Y H, Lang X M, Fan S S. Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61. J Nat Gas Chem, 2012, 21(3): 299
    [37] Long F, Fan S S, Wang Y H, et al. Promoting effect of super absorbent polymer on hydrate formation. J Nat Gas Chem, 2010, 19(3): 251
    [38] Lü Q N. Experimental Study on Thermodynamics and Formation Kinetics of Multicomponent Hydrate[Dissertation]. Dalian: Dalian University of Technology, 2018

    呂秋楠. 多元水合物熱力學及生成動力學實驗研究[學位論文]. 大連: 大連理工大學, 2018
    [39] Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437(7059): 640
    [40] Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem, 1959, 14: 1
    [41] Nguyen N N, Nguyen A V. Hydrophobic effect on gas hydrate formation in the presence of additives. Energy Fuels, 2017, 31(10): 10311
    [42] Nguyen N N, Nguyen A V. The dual effect of sodium halides on the formation of methane gas hydrate. Fuel, 2015, 156: 87
    [43] Farhang F, Nguyen A V, Hampton M A. Influence of sodium halides on the kinetics of CO2 hydrate formation. Energy Fuels, 2014, 28(2): 1220
    [44] Sowa B, Zhang X H, Hartley P G, et al. Formation of ice, tetrahydrofuran hydrate, and methane/propane mixed gas hydrates in strong monovalent salt solutions. Energy Fuels, 2014, 28(11): 6877
    [45] Wang M, Sun Z G, Qiu X H, et al. Hydrate dissociation equilibrium conditions for carbon dioxide + tetrahydrofuran. J Chem Eng Data, 2017, 62(2): 812
    [46] Wang M, Sun Z G, Li C H, et al. Equilibrium hydrate dissociation conditions of CO2 + HCFC141b or cyclopentane. J Chem Eng Data, 2016, 61(9): 3250
    [47] Ding J X, Shi L L, Shen X D, et al. SDS effect on formation kinetics and microstructure of methane hydrate. CIESC J, 2017, 68(12): 4802

    丁家祥, 史伶俐, 申小冬, 等. SDS對甲烷水合物生成動力學和微觀結構的影響. 化工學報, 2017, 68(12):4802
    [48] Zhao J Z, Zhao Y S, Shi D X. Experiment on methane concentration from oxygen-containing coal bed gas by THF solution hydrate formation. J China Coal Soc, 2008, 33(12): 1419 doi: 10.3321/j.issn:0253-9993.2008.12.018

    趙建忠, 趙陽升, 石定賢. THF溶液水合物技術提純含氧煤層氣的實驗. 煤炭學報, 2008, 33(12):1419 doi: 10.3321/j.issn:0253-9993.2008.12.018
    [49] Yang L. Static Enhancement Technology of Methane Hydrate Formation[Dissertation]. Guangzhou: South China University of Technology, 2013

    楊亮. 甲烷水合物生成的靜態強化技術[學位論文]. 廣州: 華南理工大學, 2013
    [50] Zhang Q, Wu Q, Zhang H, et al. Effect of montmorillonite on hydrate-based methane separation from mine gas. J Central South Univ, 2018, 25(1): 38
    [51] Zhao X C. Experimental Study on Formation Characteristics of Coalbed Methane Hydrate at Mesoscopic Scale[Dissertation]. Taiyuan: Taiyuan University of Technology, 2019

    趙小晨. 介觀尺度下煤層氣水合物生成特性實驗研究[學位論文]. 太原: 太原理工大學, 2019
    [52] Seo Y T, Kang S P, Lee H. Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1, 4-dioxane and acetone. Fluid Phase Equilib, 2001, 189(1-2): 99
    [53] Sizikov A A, Manakov A Y, Aladko E Y. Pressure dependence of gas hydrate formation in triple systems water – 2-Propanol–methane and water-2-Propanol–hydrogen. Fluid Phase Equilib, 2016, 425: 351
    [54] Susilo R, Ripmeester J A, Englezos P. Methane conversion rate into structure H hydrate crystals from ice. AIChE J, 2007, 53(9): 2451
    [55] Mazraeno M S, Varaminian F, Vafaie-Sefti M. Experimental and modeling investigation on structure H hydrate formation kinetics. Energy Convers Manage, 2013, 76: 1
    [56] Chen B, Xin F, Song X F, et al. Enhancement of methane hydrate formation process in phase change slurry. CIESC J, 2016, 67(8): 3202

    陳彬, 辛峰, 宋小飛, 等. 相變漿液中甲烷水合物的生成過程強化. 化工學報, 2016, 67(8):3202
    [57] Zhu M G, Sun Z G, Yang M M, et al. Experimental study on promoting HCFC-141b hydrate formation with organic phase change material. Chem Ind Eng Prog, 2017, 36(4): 1265

    朱明貴, 孫志高, 楊明明, 等. 有機相變材料促進HCFC-141b水合物生成實驗. 化工進展, 2017, 36(4):1265
    [58] Wang W X, Zeng P Y, Long X Y, et al. Methane storage in tea clathrates. Chem Commun, 2014, 50(10): 1244
    [59] Chen Y F, Yang C H, Chang M S, et al. Foam properties and detergent abilities of the saponins from camellia oleifera. Int J Mol Sci, 2010, 11(11): 4417
    [60] Veluswamy H P, Kumar A, Kumar R, et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl Energy, 2017, 188: 190
    [61] Farhadian A, Varfolomeev M A, Abdelhay Z, et al. Accelerated methane hydrate formation by ethylene diamine tetraacetamide as an efficient promoter for methane storage without foam formation. Ind Eng Chem Res, 2019, 58(19): 7752
    [62] Liu Y, Chen B Y, Chen Y L, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol, 2015, 3(8): 815
    [63] Veluswamy H P, Hong Q W, Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Cryst Growth Des, 2016, 16(10): 5932
    [64] Bhattacharjee G, Choudhary N, Kumar A, et al. Effect of the amino acid l-histidine on methane hydrate growth kinetics. J Nat Gas Sci Eng, 2016, 35: 1453
    [65] Veluswamy H P, Lee P Y, Premasinghe K, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation. Ind Eng Chem Res, 2017, 56(21): 6145
    [66] Sa J H, Kwak G H, Lee B R, et al. Abnormal incorporation of amino acids into the gas hydrate crystal lattice. Phys Chem Chem Phys, 2014, 16(48): 26730
    [67] Zhang Z E, Li Y F, Zhang W X, et al. Effectiveness of amino acid salt solutions in capturing CO2: A review. Renewable Sustainable Energy Rev, 2018, 98: 179
    [68] Fakharian H, Ganji H, Far A N, et al. Potato starch as methane hydrate promoter. Fuel, 2012, 94: 356
    [69] Ganji H, Manteghian M, Mofrad H R. Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Process Technol, 2007, 88(9): 891
    [70] Babakhani S M, Alamdari A. Effect of maize starch on methane hydrate formation/dissociation rates and stability. J Nat Gas Sci Eng, 2015, 26: 1
    [71] Lin Y J, Veluswamy H P, Linga P. Effect of eco-friendly cyclodextrin on the kinetics of mixed methane–tetrahydrofuran hydrate formation. Ind Eng Chem Res, 2018, 57(17): 5944
    [72] Mohammad-Taheri M, Moghaddam A Z, Nazari K, et al. Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose. J Nat Gas Chem, 2012, 21(2): 119
    [73] Al-Adel S, Dick J A G, El-Ghafari R, et al. The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilib, 2008, 267(1): 92
    [74] Kumar A, Sakpal T, Kumar R. Influence of low-dosage hydrate inhibitors on methane clathrate hydrate formation and dissociation kinetics. Energy Technol, 2015, 3(7): 717
    [75] Karaaslan U, Parlaktuna M. Promotion effect of polymers and surfactants on hydrate formation rate. Energy Fuels, 2002, 16(6): 1413
    [76] Kiran B S, Prasad P S R. Storage of methane gas in the form of clathrates in the presence of natural bioadditives. ACS Omega, 2018, 3(12): 18984
    [77] Lee J D, Wu H J, Englezos P. Cationic starches as gas hydrate kinetic inhibitors. Chem Eng Sci, 2007, 62(23): 6548
    [78] Sa J H, Kwak G H, Lee B R, et al. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep, 2013, 3: 2428
    [79] Sa J H, Kwak G H, Han K, et al. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. Sci Rep, 2016, 6: 31582
    [80] Fowler D L, Loebenstein W V, Pall D B, et al. Some unusual hydrates of quaternary ammonium salts. J Am Chem Soc, 1940, 62(5): 1140
    [81] Wang W X, Carter B O, Bray C L, et al. Reversible methane storage in a polymer-supported semi-clathrate hydrate at ambient temperature and pressure. Chem Mater, 2009, 21(16): 3810
    [82] Long X J, Wang Y H, Lang X M, et al. Hydrate equilibrium measurements for CH4, CO2, and CH4 + CO2 in the presence of tetra-n-butyl ammonium bromide. J Chem Eng Data, 2016, 61(11): 3897
    [83] Makino T, Yamamoto T, Nagata K, et al. Thermodynamic stabilities of tetra-n-butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems. J Chem Eng Data, 2010, 55(2): 839
    [84] Mohammadi A, Manteghian M, Mohammadi A H. Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF) + methane + water, TBAF + carbon dioxide + water, and TBAF + nitrogen +water. J Chem Eng Data, 2013, 58(12): 3545
    [85] Hughes T J, Marsh K N. Methane semi-clathrate hydrate phase equilibria with tetraisopentylammonium fluoride. J Chem Eng Data, 2011, 56(12): 4597
    [86] Villano L D, Kelland M A. An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure Ⅱ gas hydrate. Chem Eng Sci, 2010, 65(19): 5366
    [87] Sun Z G, Jiao L J, Zhao Z G, et al. Experimental study on the methane formation conditions with the presence of ionic liquids. Sci Technol Eng, 2013, 13(15): 4361 doi: 10.3969/j.issn.1671-1815.2013.15.041

    孫志高, 焦麗君, 趙之貴, 等. 含離子液體體系甲烷水合物形成特性實驗研究. 科學技術與工程, 2013, 13(15):4361 doi: 10.3969/j.issn.1671-1815.2013.15.041
    [88] Cha J H, Ha C, Han S, et al. Experimental measurement of phase equilibrium of hydrate in water plus ionic liquid+CH4 system. J Chem Eng Data, 2016, 61(1): 543
    [89] Khan M S, Bavoh C B, Partoon B, et al. Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary. J Mol Liquids, 2017, 238: 533
    [90] Mohammadi A H, Eslamimanesh A, Belandria V, et al. Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+Tetra-n-butylammonium bromide aqueous solution. J Chem Eng Data, 2011, 56(10): 3855
    [91] Ilani-Kashkouli P, Mohammadi A H, Naidoo P, et al. Hydrate phase equilibria for CO2, CH4, or N2 + tetrabutylphosphonium bromide (TBPB) aqueous solution. Fluid Phase Equilib, 2016, 411: 88
    [92] Shi L L, Liang D Q, Li D L. Phase equilibrium data of tetrabutylphosphonium bromide plus carbon dioxide or nitrogen semiclathrate hydrates. J Chem Eng Data, 2013, 58(7): 2125
    [93] Li X S, Zhan H, Xu C G, et al. Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO2 from simulated flue gas. Energy Fuels, 2012, 26(4): 2518
    [94] Suginaka T, Sakamoto H, Iino K, et al. Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2 plus tetrabutylphosphonium bromide. Fluid Phase Equilib, 2013, 344: 108
    [95] Mohammadi A. Pakzad M, Mohammadi A H, et al. Kinetics of (TBAF+CO2) semi-clathrate hydrate formation in the presence and absence of SDS. Petrol Sci, 2018, 15(2): 375
    [96] Duc N H, Chauvy F, Herri J M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry. Energy Convers Manage, 2007, 48(4): 1313
    [97] Li S, Bi Y, Yang C L, et al. Double-capture process of CO2 by gas hydrate and aqueous solution of ionic liquid. Chin J Process Eng, 2014, 14(3): 409

    李松, 畢崟, 楊翠蓮, 等. 離子液體水溶液-氣體水合物對CO2的雙捕獲工藝. 過程工程學報, 2014, 14(3):409
    [98] Fan S S, Li S F, Wang J Q, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels, 2009, 23(8): 4202
    [99] Fan S S, Long X J, Lang X M, et al. CO2 capture from CH4/CO2 mixture gas with tetra-n-butylammonium bromide semi-clathrate hydrate through a pressure recovery method. Energy Fuels, 2016, 30(10): 8529
    [100] Luo Y, Li X X, Guo G J, et al. Equilibrium conditions of binary gas mixture CH4 + H2 in semiclathrate hydrates of tetra-n-butyl ammonium bromide. J Chem Eng Data, 2018, 63(10): 3975
    [101] Horii S, Ohmura R. Continuous separation of CO2 from a H2 +CO2 gas mixture using clathrate hydrate. Appl Energy, 2018, 225: 78
  • 加載中
圖(10)
計量
  • 文章訪問數:  1824
  • HTML全文瀏覽量:  958
  • PDF下載量:  112
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-06
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回