[1] |
Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China. Energy Geosci, 2020, 1(1-2): 55
|
[2] |
Zang X Y, Liang D Q, Wu N Y. Research progress in hydrate-based carbon dioxide separation from natural gas/biogas. Mod Chem Ind, 2015, 35(2): 13臧小亞, 梁德青, 吳能友. 基于水合物技術分離天然氣/沼氣中CO2的研究進展. 現代化工, 2015, 35(2):13
|
[3] |
Gu H M, Song G H, Xiao J, et al. Thermodynamic analysis of the biomass-to-synthetic natural gas using chemical looping technology with CaO sorbent. Energy Fuels, 2013, 27(8): 4695
|
[4] |
Chen Q, Liu T B. Biogas system in rural China: Upgrading from decentralized to centralized? Renewable Sustainable Energy Rev, 2017, 78: 933
|
[5] |
Yuan L. Scientific thinking and countermeasures of coalbed methane development and utilization in China. Sci Technol Rev, 2011, 29(22): 3袁亮. 我國煤層氣開發利用的科學思考與對策. 科技導報, 2011, 29(22):3
|
[6] |
Qu S J, Dong W G, Li X F, et al. Research and application of the low concentrated coal bed methane upgrading technique. J China Coal Soc, 2014, 39(8): 1539曲思建, 董衛國, 李雪飛, 等. 低濃度煤層氣脫氧濃縮工藝技術開發與應用. 煤炭學報, 2014, 39(8):1539
|
[7] |
Liu J Z, Sun H T, Lei Y, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. J China Coal Soc, 2020, 45(1): 258劉見中, 孫海濤, 雷毅, 等. 煤礦區煤層氣開發利用新技術現狀及發展趨勢. 煤炭學報, 2020, 45(1):258
|
[8] |
Li Y L, Liu Y S, Yang X, et al. Safety analysis on low concentration coal bed methane enrichment process by proportion pressure swing adsorption. J China Coal Soc, 2012, 37(5): 804李永玲, 劉應書, 楊雄, 等. 等比例變壓吸附法富集低濃度煤層氣的安全性分析. 煤炭學報, 2012, 37(5):804
|
[9] |
Al-Rabiah A A, Ajbar A M, Soliman M A, et al. Modeling of nitrogen separation from natural gas through nanoporous carbon membranes. J Nat Gas Sci Eng, 2015, 26: 1278
|
[10] |
Hadri N E, Quang D V, Goetheer E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl Energy, 2017, 185: 1433
|
[11] |
Chen J H, Xiao L, Ling H L. Study on cryogenic liquefaction technique of low concentration coalbed methane. Coal Sci Technol, 2016, 44(6): 134陳金華, 肖露, 令狐磊. 低濃度煤層氣深冷液化工藝研究. 煤炭科學技術, 2016, 44(6):134
|
[12] |
Li W, Wang Z, Li P Y, et al. Progress in membrane technology for CH4-N2 separation. CIESC J, 2016, 67(2): 404李雯, 王志, 李潘源, 等. 用于甲烷-氮氣體系分離的膜技術研究進展. 化工學報, 2016, 67(2):404
|
[13] |
Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology. Beijing: Chemical Industry Press, 2008陳光進, 孫長宇, 馬慶蘭. 氣體水合物科學與技術. 北京: 化學工業出版社, 2008
|
[14] |
Sloan E D. Fundamental principles and applications of natural gas hydrates. Nature, 2003, 426: 353
|
[15] |
Sloan E D, Koh C A, Koh C. Clathrate Hydrates of Natural Gases. 3rd Ed. Florida: CRC Press, 2007
|
[16] |
Li A R, Jiang L L, Tang S Y. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor. Energy, 2017, 134: 629
|
[17] |
Park S S, Kim N J. Study on methane hydrate formation using ultrasonic waves. J Ind Eng Chem, 2013, 19(5): 1668
|
[18] |
Wang X L, Dennis M. Charging performance of a CO2 semi-clathrate hydrate based PCM in a lab-scale cold storage system. Appl Therm Eng, 2017, 126: 762
|
[19] |
Adisasmito S, Frank R J, Sloan E D. Hydrates of carbon dioxide and methane mixtures. J Chem Eng Data, 1991, 36(1): 68
|
[20] |
Mohammadi A H, Tohidi, B, Burgass R W. Equilibrium data and thermodynamic modeling of nitrogen, oxygen, and air clathrate hydrates. J Chem Eng Data, 2003, 48(3): 612
|
[21] |
Ward Z T, Deering C E, Marriott R A, et al. Phase equilibrium data and model comparisons for H2S hydrates. J Chem Eng Data, 2015, 60(2): 403
|
[22] |
Dicharry C, Duchateau C, Asbai H, et al. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution. Chem Eng Sci, 2013, 98: 88
|
[23] |
Li Y X, Zhu C, Wang W C. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics. Petrochem Technol, 2012, 41(6): 699 doi: 10.3969/j.issn.1000-8144.2012.06.015李玉星, 朱超, 王武昌. 表面活性劑促進CO2水合物生成的實驗及動力學模型. 石油化工, 2012, 41(6):699 doi: 10.3969/j.issn.1000-8144.2012.06.015
|
[24] |
Zhang Q D, Li Y X, Wang W C. Influence of chemical additives on hydrate formation and gas storage. Chem Eng Oil Gas, 2014, 43(2): 146 doi: 10.3969/j.issn.1007-3426.2014.02.008張慶東, 李玉星, 王武昌. 化學添加劑對水合物生成和儲氣的影響. 石油與天然氣化工, 2014, 43(2):146 doi: 10.3969/j.issn.1007-3426.2014.02.008
|
[25] |
Zhang B Y, Wu Q, Wang Y J. Reaction mechanism between surfactant and induction of gas hydrate formation. J Jilin Univ Eng Technol Ed, 2007, 37(1): 239張保勇, 吳強, 王永敬. 表面活性劑對氣體水合物生成誘導時間的作用機理. 吉林大學學報(工學版), 2007, 37(1):239
|
[26] |
Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation. Chem Eng Sci, 2000, 55(19): 4175
|
[27] |
Wang F, Jia Z Z, Luo S J, et al. Effects of different anionic surfactants on methane hydrate formation. Chem Eng Sci, 2015, 137: 896
|
[28] |
Veluswamy H P, Chen J Y, Linga P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chem Eng Sci, 2015, 126: 488
|
[29] |
Profio P D, Arca S, Germani R, et al. Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved? Chem Eng Sci, 2005, 60(15): 4141
|
[30] |
Gayet P, Dicharry C, Marion G, et al. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chem Eng Sci, 2005, 60(21): 5751
|
[31] |
Lo C, Zhang J S, Somasundaran P, et al. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy. J Colloid Interface Sci, 2012, 376(1): 173
|
[32] |
Meng H L, Guo R B, Wang F, et al. Effect of different surfactants on methane hydrate formation. Renewable Energy Resour, 2017, 35(3): 329孟漢林, 郭榮波, 王飛, 等. 不同表面活性劑對甲烷水合物生成的影響. 可再生能源, 2017, 35(3):329
|
[33] |
Yoslim J, Linga P, Englezos P. Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants. J Cryst Growth, 2010, 313(1): 68
|
[34] |
Zhang J S, Lee S, Lee J W. Kinetics of methane hydrate formation from SDS solution. Ind Eng Chem Res, 2007, 46(19): 6353
|
[35] |
Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel, 2019, 235: 1400
|
[36] |
Wang Y H, Lang X M, Fan S S. Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61. J Nat Gas Chem, 2012, 21(3): 299
|
[37] |
Long F, Fan S S, Wang Y H, et al. Promoting effect of super absorbent polymer on hydrate formation. J Nat Gas Chem, 2010, 19(3): 251
|
[38] |
Lü Q N. Experimental Study on Thermodynamics and Formation Kinetics of Multicomponent Hydrate[Dissertation]. Dalian: Dalian University of Technology, 2018呂秋楠. 多元水合物熱力學及生成動力學實驗研究[學位論文]. 大連: 大連理工大學, 2018
|
[39] |
Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437(7059): 640
|
[40] |
Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem, 1959, 14: 1
|
[41] |
Nguyen N N, Nguyen A V. Hydrophobic effect on gas hydrate formation in the presence of additives. Energy Fuels, 2017, 31(10): 10311
|
[42] |
Nguyen N N, Nguyen A V. The dual effect of sodium halides on the formation of methane gas hydrate. Fuel, 2015, 156: 87
|
[43] |
Farhang F, Nguyen A V, Hampton M A. Influence of sodium halides on the kinetics of CO2 hydrate formation. Energy Fuels, 2014, 28(2): 1220
|
[44] |
Sowa B, Zhang X H, Hartley P G, et al. Formation of ice, tetrahydrofuran hydrate, and methane/propane mixed gas hydrates in strong monovalent salt solutions. Energy Fuels, 2014, 28(11): 6877
|
[45] |
Wang M, Sun Z G, Qiu X H, et al. Hydrate dissociation equilibrium conditions for carbon dioxide + tetrahydrofuran. J Chem Eng Data, 2017, 62(2): 812
|
[46] |
Wang M, Sun Z G, Li C H, et al. Equilibrium hydrate dissociation conditions of CO2 + HCFC141b or cyclopentane. J Chem Eng Data, 2016, 61(9): 3250
|
[47] |
Ding J X, Shi L L, Shen X D, et al. SDS effect on formation kinetics and microstructure of methane hydrate. CIESC J, 2017, 68(12): 4802丁家祥, 史伶俐, 申小冬, 等. SDS對甲烷水合物生成動力學和微觀結構的影響. 化工學報, 2017, 68(12):4802
|
[48] |
Zhao J Z, Zhao Y S, Shi D X. Experiment on methane concentration from oxygen-containing coal bed gas by THF solution hydrate formation. J China Coal Soc, 2008, 33(12): 1419 doi: 10.3321/j.issn:0253-9993.2008.12.018趙建忠, 趙陽升, 石定賢. THF溶液水合物技術提純含氧煤層氣的實驗. 煤炭學報, 2008, 33(12):1419 doi: 10.3321/j.issn:0253-9993.2008.12.018
|
[49] |
Yang L. Static Enhancement Technology of Methane Hydrate Formation[Dissertation]. Guangzhou: South China University of Technology, 2013楊亮. 甲烷水合物生成的靜態強化技術[學位論文]. 廣州: 華南理工大學, 2013
|
[50] |
Zhang Q, Wu Q, Zhang H, et al. Effect of montmorillonite on hydrate-based methane separation from mine gas. J Central South Univ, 2018, 25(1): 38
|
[51] |
Zhao X C. Experimental Study on Formation Characteristics of Coalbed Methane Hydrate at Mesoscopic Scale[Dissertation]. Taiyuan: Taiyuan University of Technology, 2019趙小晨. 介觀尺度下煤層氣水合物生成特性實驗研究[學位論文]. 太原: 太原理工大學, 2019
|
[52] |
Seo Y T, Kang S P, Lee H. Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1, 4-dioxane and acetone. Fluid Phase Equilib, 2001, 189(1-2): 99
|
[53] |
Sizikov A A, Manakov A Y, Aladko E Y. Pressure dependence of gas hydrate formation in triple systems water – 2-Propanol–methane and water-2-Propanol–hydrogen. Fluid Phase Equilib, 2016, 425: 351
|
[54] |
Susilo R, Ripmeester J A, Englezos P. Methane conversion rate into structure H hydrate crystals from ice. AIChE J, 2007, 53(9): 2451
|
[55] |
Mazraeno M S, Varaminian F, Vafaie-Sefti M. Experimental and modeling investigation on structure H hydrate formation kinetics. Energy Convers Manage, 2013, 76: 1
|
[56] |
Chen B, Xin F, Song X F, et al. Enhancement of methane hydrate formation process in phase change slurry. CIESC J, 2016, 67(8): 3202陳彬, 辛峰, 宋小飛, 等. 相變漿液中甲烷水合物的生成過程強化. 化工學報, 2016, 67(8):3202
|
[57] |
Zhu M G, Sun Z G, Yang M M, et al. Experimental study on promoting HCFC-141b hydrate formation with organic phase change material. Chem Ind Eng Prog, 2017, 36(4): 1265朱明貴, 孫志高, 楊明明, 等. 有機相變材料促進HCFC-141b水合物生成實驗. 化工進展, 2017, 36(4):1265
|
[58] |
Wang W X, Zeng P Y, Long X Y, et al. Methane storage in tea clathrates. Chem Commun, 2014, 50(10): 1244
|
[59] |
Chen Y F, Yang C H, Chang M S, et al. Foam properties and detergent abilities of the saponins from camellia oleifera. Int J Mol Sci, 2010, 11(11): 4417
|
[60] |
Veluswamy H P, Kumar A, Kumar R, et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl Energy, 2017, 188: 190
|
[61] |
Farhadian A, Varfolomeev M A, Abdelhay Z, et al. Accelerated methane hydrate formation by ethylene diamine tetraacetamide as an efficient promoter for methane storage without foam formation. Ind Eng Chem Res, 2019, 58(19): 7752
|
[62] |
Liu Y, Chen B Y, Chen Y L, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol, 2015, 3(8): 815
|
[63] |
Veluswamy H P, Hong Q W, Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Cryst Growth Des, 2016, 16(10): 5932
|
[64] |
Bhattacharjee G, Choudhary N, Kumar A, et al. Effect of the amino acid l-histidine on methane hydrate growth kinetics. J Nat Gas Sci Eng, 2016, 35: 1453
|
[65] |
Veluswamy H P, Lee P Y, Premasinghe K, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation. Ind Eng Chem Res, 2017, 56(21): 6145
|
[66] |
Sa J H, Kwak G H, Lee B R, et al. Abnormal incorporation of amino acids into the gas hydrate crystal lattice. Phys Chem Chem Phys, 2014, 16(48): 26730
|
[67] |
Zhang Z E, Li Y F, Zhang W X, et al. Effectiveness of amino acid salt solutions in capturing CO2: A review. Renewable Sustainable Energy Rev, 2018, 98: 179
|
[68] |
Fakharian H, Ganji H, Far A N, et al. Potato starch as methane hydrate promoter. Fuel, 2012, 94: 356
|
[69] |
Ganji H, Manteghian M, Mofrad H R. Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Process Technol, 2007, 88(9): 891
|
[70] |
Babakhani S M, Alamdari A. Effect of maize starch on methane hydrate formation/dissociation rates and stability. J Nat Gas Sci Eng, 2015, 26: 1
|
[71] |
Lin Y J, Veluswamy H P, Linga P. Effect of eco-friendly cyclodextrin on the kinetics of mixed methane–tetrahydrofuran hydrate formation. Ind Eng Chem Res, 2018, 57(17): 5944
|
[72] |
Mohammad-Taheri M, Moghaddam A Z, Nazari K, et al. Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose. J Nat Gas Chem, 2012, 21(2): 119
|
[73] |
Al-Adel S, Dick J A G, El-Ghafari R, et al. The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilib, 2008, 267(1): 92
|
[74] |
Kumar A, Sakpal T, Kumar R. Influence of low-dosage hydrate inhibitors on methane clathrate hydrate formation and dissociation kinetics. Energy Technol, 2015, 3(7): 717
|
[75] |
Karaaslan U, Parlaktuna M. Promotion effect of polymers and surfactants on hydrate formation rate. Energy Fuels, 2002, 16(6): 1413
|
[76] |
Kiran B S, Prasad P S R. Storage of methane gas in the form of clathrates in the presence of natural bioadditives. ACS Omega, 2018, 3(12): 18984
|
[77] |
Lee J D, Wu H J, Englezos P. Cationic starches as gas hydrate kinetic inhibitors. Chem Eng Sci, 2007, 62(23): 6548
|
[78] |
Sa J H, Kwak G H, Lee B R, et al. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep, 2013, 3: 2428
|
[79] |
Sa J H, Kwak G H, Han K, et al. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. Sci Rep, 2016, 6: 31582
|
[80] |
Fowler D L, Loebenstein W V, Pall D B, et al. Some unusual hydrates of quaternary ammonium salts. J Am Chem Soc, 1940, 62(5): 1140
|
[81] |
Wang W X, Carter B O, Bray C L, et al. Reversible methane storage in a polymer-supported semi-clathrate hydrate at ambient temperature and pressure. Chem Mater, 2009, 21(16): 3810
|
[82] |
Long X J, Wang Y H, Lang X M, et al. Hydrate equilibrium measurements for CH4, CO2, and CH4 + CO2 in the presence of tetra-n-butyl ammonium bromide. J Chem Eng Data, 2016, 61(11): 3897
|
[83] |
Makino T, Yamamoto T, Nagata K, et al. Thermodynamic stabilities of tetra-n-butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems. J Chem Eng Data, 2010, 55(2): 839
|
[84] |
Mohammadi A, Manteghian M, Mohammadi A H. Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF) + methane + water, TBAF + carbon dioxide + water, and TBAF + nitrogen +water. J Chem Eng Data, 2013, 58(12): 3545
|
[85] |
Hughes T J, Marsh K N. Methane semi-clathrate hydrate phase equilibria with tetraisopentylammonium fluoride. J Chem Eng Data, 2011, 56(12): 4597
|
[86] |
Villano L D, Kelland M A. An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure Ⅱ gas hydrate. Chem Eng Sci, 2010, 65(19): 5366
|
[87] |
Sun Z G, Jiao L J, Zhao Z G, et al. Experimental study on the methane formation conditions with the presence of ionic liquids. Sci Technol Eng, 2013, 13(15): 4361 doi: 10.3969/j.issn.1671-1815.2013.15.041孫志高, 焦麗君, 趙之貴, 等. 含離子液體體系甲烷水合物形成特性實驗研究. 科學技術與工程, 2013, 13(15):4361 doi: 10.3969/j.issn.1671-1815.2013.15.041
|
[88] |
Cha J H, Ha C, Han S, et al. Experimental measurement of phase equilibrium of hydrate in water plus ionic liquid+CH4 system. J Chem Eng Data, 2016, 61(1): 543
|
[89] |
Khan M S, Bavoh C B, Partoon B, et al. Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary. J Mol Liquids, 2017, 238: 533
|
[90] |
Mohammadi A H, Eslamimanesh A, Belandria V, et al. Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+Tetra-n-butylammonium bromide aqueous solution. J Chem Eng Data, 2011, 56(10): 3855
|
[91] |
Ilani-Kashkouli P, Mohammadi A H, Naidoo P, et al. Hydrate phase equilibria for CO2, CH4, or N2 + tetrabutylphosphonium bromide (TBPB) aqueous solution. Fluid Phase Equilib, 2016, 411: 88
|
[92] |
Shi L L, Liang D Q, Li D L. Phase equilibrium data of tetrabutylphosphonium bromide plus carbon dioxide or nitrogen semiclathrate hydrates. J Chem Eng Data, 2013, 58(7): 2125
|
[93] |
Li X S, Zhan H, Xu C G, et al. Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO2 from simulated flue gas. Energy Fuels, 2012, 26(4): 2518
|
[94] |
Suginaka T, Sakamoto H, Iino K, et al. Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2 plus tetrabutylphosphonium bromide. Fluid Phase Equilib, 2013, 344: 108
|
[95] |
Mohammadi A. Pakzad M, Mohammadi A H, et al. Kinetics of (TBAF+CO2) semi-clathrate hydrate formation in the presence and absence of SDS. Petrol Sci, 2018, 15(2): 375
|
[96] |
Duc N H, Chauvy F, Herri J M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry. Energy Convers Manage, 2007, 48(4): 1313
|
[97] |
Li S, Bi Y, Yang C L, et al. Double-capture process of CO2 by gas hydrate and aqueous solution of ionic liquid. Chin J Process Eng, 2014, 14(3): 409李松, 畢崟, 楊翠蓮, 等. 離子液體水溶液-氣體水合物對CO2的雙捕獲工藝. 過程工程學報, 2014, 14(3):409
|
[98] |
Fan S S, Li S F, Wang J Q, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels, 2009, 23(8): 4202
|
[99] |
Fan S S, Long X J, Lang X M, et al. CO2 capture from CH4/CO2 mixture gas with tetra-n-butylammonium bromide semi-clathrate hydrate through a pressure recovery method. Energy Fuels, 2016, 30(10): 8529
|
[100] |
Luo Y, Li X X, Guo G J, et al. Equilibrium conditions of binary gas mixture CH4 + H2 in semiclathrate hydrates of tetra-n-butyl ammonium bromide. J Chem Eng Data, 2018, 63(10): 3975
|
[101] |
Horii S, Ohmura R. Continuous separation of CO2 from a H2 +CO2 gas mixture using clathrate hydrate. Appl Energy, 2018, 225: 78
|