<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于卷積神經網絡的反無人機系統聲音識別方法

薛珊 李廣青 呂瓊瑩 毛逸維

薛珊, 李廣青, 呂瓊瑩, 毛逸維. 基于卷積神經網絡的反無人機系統聲音識別方法[J]. 工程科學學報, 2020, 42(11): 1516-1524. doi: 10.13374/j.issn2095-9389.2020.06.30.008
引用本文: 薛珊, 李廣青, 呂瓊瑩, 毛逸維. 基于卷積神經網絡的反無人機系統聲音識別方法[J]. 工程科學學報, 2020, 42(11): 1516-1524. doi: 10.13374/j.issn2095-9389.2020.06.30.008
XUE Shan, LI Guang-qing, Lü Qiong-ying, MAO Yi-wei. Sound recognition method of an anti-UAV system based on a convolutional neural network[J]. Chinese Journal of Engineering, 2020, 42(11): 1516-1524. doi: 10.13374/j.issn2095-9389.2020.06.30.008
Citation: XUE Shan, LI Guang-qing, Lü Qiong-ying, MAO Yi-wei. Sound recognition method of an anti-UAV system based on a convolutional neural network[J]. Chinese Journal of Engineering, 2020, 42(11): 1516-1524. doi: 10.13374/j.issn2095-9389.2020.06.30.008

基于卷積神經網絡的反無人機系統聲音識別方法

doi: 10.13374/j.issn2095-9389.2020.06.30.008
基金項目: 吉林省重點科技研發資助項目(20180201058SF)
詳細信息
    通訊作者:

    E-mail: 1660348815@qq.com

  • 中圖分類號: TP391

Sound recognition method of an anti-UAV system based on a convolutional neural network

More Information
  • 摘要: 針對如何識別無人機的問題,提出了一種基于卷積神經網絡的聲音識別無人機的方法。首先,對100 m范圍內的無人機、鳥和人的聲音進行采集、預處理和提取MFCC+GFCC特征值,將其特征參數作為卷積神經網絡學習和識別的數據集;然后分別設計了支持向量機和卷積神經網絡兩種模型對無人機等聲音進行識別實驗。實驗結果表明,運用支持向量機識別無人機的準確率為91.9%,卷積神經網絡識別無人機的準確率為96.5%。為了進一步驗證設計的卷積神經網絡的識別能力,在部分UrbanSound8K數據集上進行測試,準確率達到90%。實驗結果表明運用卷積神經網絡識別無人機具有可行性,且識別性能優于支持向量機。

     

  • 圖  1  無人機聲音樣本預加重圖

    Figure  1.  Pre-weighting diagram of an UAV sound sample

    圖  2  無人機聲音樣本加漢明窗函數圖

    Figure  2.  Function diagram of an UAV sound sample plus a Hamming window

    圖  3  線性頻率與梅爾頻率轉換曲線圖

    Figure  3.  Conversion curve of linear frequency and Mel frequency

    圖  4  Gammatone濾波器幅頻特性圖

    Figure  4.  Amplitude frequency characteristics of a gammatone filter

    圖  5  特征頻譜圖。(a)MFCC+GFCC特征頻譜圖;(b)MFCC特征頻譜圖;(c)GFCC特征頻譜圖

    Figure  5.  Characteristic spectra: (a) characteristic spectrum of mel frequency cepstral coefficient (MFCC) + gammatone frequency cepstral coefficient (GFCC); (b) characteristic spectrum of MFCC; (c) characteristic spectrum of GFCC

    圖  6  SVM分類示意圖

    Figure  6.  Schematic of support vector machine classification

    圖  7  設計的卷積神經網絡結構圖

    Figure  7.  Structure of a CNN

    圖  8  采集樣本實驗圖。(a)白天停車場采集樣本圖;(b)晚間操場采集樣本圖

    Figure  8.  Sample collection experiment map: (a) sample collection map of parking lot during day; (b) sample collection map of playground at night

    圖  9  卷積神經網絡結果顯示圖。(a)python顯示圖;(b)測試集識別準確率變化曲線圖

    Figure  9.  CNN results display: (a) python display; (b) change curve of test set recognition accuracy

    圖  10  支持向量機結果顯示圖

    Figure  10.  SVM results display

    圖  11  部分Urbansound8K數據集實驗結果顯示圖。(a)python顯示圖;(b)識別準確率變化曲線圖

    Figure  11.  Experimental results display of some Urbansound8K datasets: (a) python display; (b) recognition accuracy change curve

    表  1  CNN參數設置

    Table  1.   CNN parameter setting

    LayerInput dimensionOutput dimensionSampling windowFunction selection
    Input layer[99,26]
    Convolution layer 1[99,26][99,26,32]5×5, striding=1,
    padding=same,
    convolution kernel=32
    Activation functionRelu
    Pool layer 1[99,26,32][50,13,32]2×2, striding=2
    Convolution layer 2[50,13,32][50,13,64]5×5, striding=1,
    padding=same,
    convolution kernel=32
    Activation functionRelu
    Pool layer 2[50,13,64][25,7,64]2×2, striding=2
    Full connection layer 1[25,7,64][1,10]
    Full connection layer 2[1,10][1,10]
    Output layer[1,10][1,3]Softmax
    下載: 導出CSV

    表  2  各類音頻樣本數量表

    Table  2.   Number of audio samples

    SampleTraining set (piece)Test set (piece)
    UAV1500300
    Bird1500300
    People1500300
    下載: 導出CSV

    表  3  不同模型實驗結果

    Table  3.   Experimental results of different models

    ModelAccuracy /%
    CNN96.5
    SVM91.9
    下載: 導出CSV

    表  4  不同卷積層測試集準確率實驗結果

    Table  4.   Experimental results on accuracy of test sets of different convolution layers

    Number of layersAccuracy /%Training time/sNumber of iterations
    296.5222526580.61500
    396.5333441907.11700
    496.5333476055.32000
    596.56667126223.52500
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen W S, Liu J, Chen X L, et al. Non-cooperative UAV target recognition in low-altitude airspace based on motion model. J Beijing Univ Aeron Astron, 2019, 45(4): 687

    陳唯實, 劉佳, 陳小龍, 等. 基于運動模型的低空非合作無人機目標識別. 北京航空航天大學學報, 2019, 45(4):687
    [2] Bisio I, Garibotto C, Lavagetto F, et al. Blind detection: Advanced techniques for WiFi-based drone surveillance. IEEE Trans Veh Technol, 2018, 68(1): 938
    [3] Quan H D, Tang Z Q, Sun H X, et al. Binary-sequence frequency hopping communication method based on pseudo-random linear frequency modulation. J Huazhong Univ Sci Technol Nat Sci Ed, 2019, 47(11): 30

    全厚德, 唐志強, 孫慧賢, 等. 基于偽隨機線性調頻的雙序列跳頻通信方法. 華中科技大學學報: 自然科學版, 2019, 47(11):30
    [4] Huang F Z, Zeng J F, Zhang Y, et al. Convolutional recurrent neural networks with multi-sized convolution filters for sound-event recognition. Mod Phys Lett B, 2020, 34(23): 2050235 doi: 10.1142/S0217984920502358
    [5] Kim J, Min K, Jung M, et al. Occupant behavior monitoring and emergency event detection in single-person households using deep learning-based sound recognition. Build Environ, 2020, 181: 107092 doi: 10.1016/j.buildenv.2020.107092
    [6] Lan H, Fang Z Y. Recent advances in zero-shot learning. J Electron Inf Technol, 2020, 42(5): 1188 doi: 10.11999/JEIT190485

    蘭紅, 方治嶼. 零樣本圖像識別. 電子與信息學報, 2020, 42(5):1188 doi: 10.11999/JEIT190485
    [7] Rai A K, Senthilkumar R, Aswin K R. Combining pixel selection with covariance similarity approach in hyperspectral face recognition based on convolution neural network. Microprocessors Microsystems, 2020, 76: 103096 doi: 10.1016/j.micpro.2020.103096
    [8] Sainath T N, Mohamed A R, Kingsbury B, et al. Deep convolutional neural networks for LVCSR // 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, 2013: 8614
    [9] Xie Y, Liang R Y, Bao Y Q, et al. Deception detection with spectral features based on deep belief network. Acta Acustica, 2019, 44(2): 214

    謝躍, 梁瑞宇, 包永強, 等. 融合改進梅爾譜特征和深信念網絡的語音測謊算法. 聲學學報, 2019, 44(2):214
    [10] Meng C, Li Y G, Zhang G Q, et al. Signal recognition of loose particles inside aerobat based on support vector machine. J Beijing Univ Aeron Astron, 2020, 46(3): 488

    孟偲, 李陽剛, 張國強, 等. 基于支持向量機的飛行器多余物信號識別. 北京航空航天大學學報, 2020, 46(3):488
    [11] Zhang K, Su Y, Wang J Y, et al. Environment sound classification system based on hybrid feature and convolutional neural network. J Northwestern Polytech Univ, 2020, 38(1): 162 doi: 10.3969/j.issn.1000-2758.2020.01.020

    張科, 蘇雨, 王靖宇, 等. 基于融合特征以及卷積神經網絡的環境聲音分類系統研究. 西北工業大學學報, 2020, 38(1):162 doi: 10.3969/j.issn.1000-2758.2020.01.020
    [12] Dua M, Aggarwal R K, Biswas M. GFCC based discriminatively trained noise robust continuous ASR system for Hindi language. J Ambient Intell Human Comput, 2019, 10(6): 2301
    [13] Ali H, Tran S N, Benetos E, et al. Speaker recognition with hybrid features from a deep belief network. Neural Computing Appl, 2018, 29(6): 13 doi: 10.1007/s00521-016-2501-7
    [14] Geng Q S, Wang F H, Jin X. Mechanical fault sound diagnosis based on GFCC and random forest optimized by whale algorithm for dry type transformer. Electr Power Autom Equip, 2020, 40(8): 191

    耿琪深, 王豐華, 金霄. 基于Gammatone濾波器倒譜系數與鯨魚算法優化隨機森林的干式變壓器機械故障聲音診斷. 電力自動化設備, 2020, 40(8):191
    [15] Hou G Y, Xu Z D, Liu X, et al. Optimization method improvement for nonlinear constrained single objective system without mathematic models. Chin J Eng, 2018, 40(11): 1402

    侯公羽, 許哲東, 劉欣, 等. 無數學模型的非線性約束單目標系統優化方法改進. 工程科學學報, 2018, 40(11):1402
    [16] Yu X Y, Wu J H, Gao Y H. Research on refrigerant leakage identification for heat pump system based on PCA-SVM models. CIESC J, 2020, 71(7): 3151

    于仙毅, 巫江虹, 高云輝. 基于主成分分析與支持向量機的熱泵系統制冷劑泄漏識別研究. 化工學報, 2020, 71(7):3151
    [17] Kari T, Gao W S, Zhang Z W, et al. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm. J Tsinghua Univ Sci Technol, 2018, 58(7): 623

    吐松江·卡日, 高文勝, 張紫薇, 等. 基于支持向量機和遺傳算法的變壓器故障診斷. 清華大學學報:自然科學版, 2018, 58(7):623
    [18] Shu C, Jin X, Li Z P, et al. Noise diagnosis method of distribution transformer discharge fault based on CEEMDAN. High Voltage Eng, 2018, 44(8): 2603

    舒暢, 金瀟, 李自品, 等. 基于CEEMDAN的配電變壓器放電故障噪聲診斷方法. 高電壓技術, 2018, 44(8):2603
    [19] Tuttle J F, Blackburn L D, Powell K M. On-line classification of coal combustion quality using nonlinear SVM for improved neural network NOx emission rate prediction. Comput Chem Eng, 2020, 141: 106990 doi: 10.1016/j.compchemeng.2020.106990
    [20] Wang X Y, He L S, Wang P J, et al. Milling cutter breakage detection based on VMD. J Vib Shock, 2020, 39(16): 135

    王向陽, 何嶺松, 王平江, 等. 基于VMD的銑刀破損檢測. 振動與沖擊, 2020, 39(16):135
    [21] Gong W F, Chen H, Zhang Z H, et al. A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion. Sensors, 2019, 19(7): 1693 doi: 10.3390/s19071693
    [22] Wang H X, Zhou J Q, Gu C H, et al. Design of activation function in CNN for image classification. J Zhejiang Univ Eng Sci, 2019, 53(7): 1363

    王紅霞, 周家奇, 辜承昊, 等. 用于圖像分類的卷積神經網絡中激活函數的設計. 浙江大學學報:工學版, 2019, 53(7):1363
    [23] Zeng Y, Chen Y L, Cai X D. Face recognition algorithm for the deep hash combined with global and local pooling. J Xidian Univ Nat Sci, 2018, 45(5): 163

    曾燕, 陳岳林, 蔡曉東. 結合全局與局部池化的深度哈希人臉識別算法. 西安電子科技大學學報: 自然科學版, 2018, 45(5):163
    [24] Liang M J, Cui X Y, Song Q S, et al. Traffic sign recognition method based on HOG-Gabor feature fusion and Softmax classifier. J Traffic Transportation Eng, 2017, 17(3): 151 doi: 10.3969/j.issn.1671-1637.2017.03.016

    梁敏健, 崔嘯宇, 宋青松, 等. 基于HOG-Gabor特征融合與Softmax分類器的交通標志識別方法. 交通運輸工程學報, 2017, 17(3):151 doi: 10.3969/j.issn.1671-1637.2017.03.016
    [25] Wang Y H, Wu J W, Ma S L, et al. Mechanical fault diagnosis research of high voltage circuit breaker based on Kernel principal component analysis and SoftMax. Trans China Electrotech Soc, 2020, 35(Suppl 1): 267

    王昱皓, 武建文, 馬速良, 等. 基于核主成分分析-SoftMax的高壓斷路器機械故障診斷技術研究. 電工技術學報, 2020, 35(增刊1): 267
    [26] Li S F. TensorFlow Lite: On-device machine learning framework. J Comput Res Dev, 2020, 57(9): 1839 doi: 10.7544/issn1000-1239.2020.20200291

    李雙峰. TensorFlow Lite: 端側機器學習框架. 計算機研究與發展, 2020, 57(9):1839 doi: 10.7544/issn1000-1239.2020.20200291
  • 加載中
圖(11) / 表(4)
計量
  • 文章訪問數:  1496
  • HTML全文瀏覽量:  1047
  • PDF下載量:  83
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-30
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回