<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

磨礦和浮選過程中黃鐵礦電化學行為的研究進展

龔志輝 戴惠新 路夢雨 武立偉 趙可可

龔志輝, 戴惠新, 路夢雨, 武立偉, 趙可可. 磨礦和浮選過程中黃鐵礦電化學行為的研究進展[J]. 工程科學學報, 2021, 43(1): 58-66. doi: 10.13374/j.issn2095-9389.2020.06.29.001
引用本文: 龔志輝, 戴惠新, 路夢雨, 武立偉, 趙可可. 磨礦和浮選過程中黃鐵礦電化學行為的研究進展[J]. 工程科學學報, 2021, 43(1): 58-66. doi: 10.13374/j.issn2095-9389.2020.06.29.001
GONG Zhi-hui, DAI Hui-xin, LU Meng-yu, WU Li-wei, ZHAO Ke-ke. Research progress in the electrochemical behavior of pyrite during grinding and flotation[J]. Chinese Journal of Engineering, 2021, 43(1): 58-66. doi: 10.13374/j.issn2095-9389.2020.06.29.001
Citation: GONG Zhi-hui, DAI Hui-xin, LU Meng-yu, WU Li-wei, ZHAO Ke-ke. Research progress in the electrochemical behavior of pyrite during grinding and flotation[J]. Chinese Journal of Engineering, 2021, 43(1): 58-66. doi: 10.13374/j.issn2095-9389.2020.06.29.001

磨礦和浮選過程中黃鐵礦電化學行為的研究進展

doi: 10.13374/j.issn2095-9389.2020.06.29.001
基金項目: 國家自然科學基金資助項目(51764023)
詳細信息
    通訊作者:

    E-mail:dhx6688@sina.cn

  • 中圖分類號: TD952

Research progress in the electrochemical behavior of pyrite during grinding and flotation

More Information
  • 摘要: 綜述了黃鐵礦在選礦過程中有關的電化學行為及工作機理,重點討論了黃鐵礦結構特性、溶液中氧化、金屬離子作用和抑制劑對黃鐵礦電化學行為的影響;此外,還討論了磨礦過程中電偶相互作用、研磨介質形狀、介質材料和研磨氣氛對研磨中黃鐵礦電化學行為的影響。其中黃鐵礦晶體結構的不同對黃鐵礦表面的氧化具有較大影響,從而間接的影響黃鐵礦的可浮性,半導體性質對黃鐵礦的導電率具有顯著的影響;同時適度的氧化有利于黃鐵礦的無捕收劑浮選,而強烈的還原電位或氧化電位會抑制黃鐵礦的浮選;電位的增加,對銅活化黃鐵礦有不利影響,主要原因是電位增加導致活化Cu+的濃度降低,同時黃鐵礦表面被鐵氧化物覆蓋阻礙了銅離子的吸附。抑制劑的加入可以直接參與捕收劑與黃鐵礦之間的氧化還原反應,從而抑制黃鐵礦的浮選;同時磨礦介質及氣氛條件的不同也會影響黃鐵礦電化學行為。

     

  • 圖  1  黃鐵礦空氣中氧化反應路線圖

    Figure  1.  Mechanisms of pyrite oxidation in air

    圖  2  25 ℃下FeS2–H2O體系Eh–pH圖

    Figure  2.  Eh–pH diagram for the FeS2–H2O system at 25 ℃

    圖  3  有機聚合物與黃鐵礦礦表面可能的相互作用機制:靜電吸附(1),疏水相互作用(2),氫鍵(3)和化學相互作用(4)

    Figure  3.  Possible interaction mechanisms of organic polymers with pyrite surface: electrochemical attraction (1), hydrophobic interaction (2), hydrogen bonding (3), and chemical interaction (4)

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Liu L, Mavrogenes J, Holden P, et al. Quadruple sulfur isotopic fractionation during pyrite desulfidation to pyrrhotite. Geochim Cosmochim Acta, 2020, 273: 354 doi: 10.1016/j.gca.2020.01.024
    [2] Xian H Y, He H P, Zhu J X, et al. Crystal habit-directed gold deposition on pyrite: Surface chemical interpretation of the pyrite morphology indicative of gold enrichment. Geochim Cosmochim Acta, 2019, 264: 191 doi: 10.1016/j.gca.2019.08.011
    [3] Santander M, Valderrama L. Recovery of pyrite from copper tailings by flotation. J Mater Res Technol, 2019, 8(5): 4312 doi: 10.1016/j.jmrt.2019.07.041
    [4] Mikhlin Y, Tomashevich Y, Vorobyev S, et al. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides. Appl Surf Sci, 2016, 387: 796 doi: 10.1016/j.apsusc.2016.06.190
    [5] Bulut G, Yenial U, Emiroglu E, et al. Arsenic removal from aqueous solution using pyrite. J Clean Prod, 2014, 84: 526 doi: 10.1016/j.jclepro.2013.08.018
    [6] Chernyshova I V. Anodic oxidation of galena (PbS) studied FTIR-spectroelectrochemically. J Phys Chem B, 2001, 105(34): 8178 doi: 10.1021/jp0110253
    [7] Grano S, Ralston J, Smart R S C. Influence of electrochemical environment on the flotation behaviour of Mt. Isa copper and lead-zinc ore. Int J Miner Process, 1990, 30(1-2): 69
    [8] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [9] Nicol M, Zhang S C, Tjandrawan V. The electrochemistry of pyrite in chloride solutions. Hydrometallurgy, 2018, 178: 116 doi: 10.1016/j.hydromet.2018.04.013
    [10] Majuste D, Ciminelli V S T, Osseo-Asare K, et al. Quantitative assessment of the effect of pyrite inclusions on chalcopyrite electrochemistry under oxidizing conditions. Hydrometallurgy, 2012, 113-114: 167 doi: 10.1016/j.hydromet.2011.12.020
    [11] Nicol M J, Miki H, Zhang S C, et al. The effects of sulphate ions and temperature on the leaching of pyrite. 1. Electrochemistry. Hydrometallurgy, 2013, 133: 188 doi: 10.1016/j.hydromet.2013.01.010
    [12] Qi X, Li X, Liang Y N, et al. Surface structure-dependent hydrophobicity/oleophilicity of pyrite and its influence on coal flotation. J Ind Eng Chem, 2020, 87: 136 doi: 10.1016/j.jiec.2020.03.024
    [13] He H P, Xian H Y, Zhu J X, et al. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. Acta Petrol Sin, 2019, 35(1): 129 doi: 10.18654/1000-0569/2019.01.09

    何宏平, 鮮海洋, 朱建喜, 等. 從礦物粉晶表面反應性到礦物晶面反應性——以黃鐵礦氧化行為的晶面差異性為例. 巖石學報, 2019, 35(1):129 doi: 10.18654/1000-0569/2019.01.09
    [14] Alfonso D R. Computational investigation of FeS2 surfaces and prediction of effects of sulfur environment on stabilities. J Phys Chem C, 2010, 114(19): 8971 doi: 10.1021/jp100578n
    [15] Zhu J X, Xian H Y, Lin X J, et al. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochim Cosmochim Acta, 2018, 228: 259 doi: 10.1016/j.gca.2018.02.050
    [16] Xian Y J, Wen S M, Chen X M, et al. Effect of lattice defects on the electronic structures and floatability of pyrites. Int J Miner Metall Mater, 2012, 19(12): 1069 doi: 10.1007/s12613-012-0672-5
    [17] de Oliveira C M, Müller T G, André R A, et al. Pyrite from coal mining: High-energy milling and analysis of the electrical and optical properties. Mate Lett, 2019, 253: 339 doi: 10.1016/j.matlet.2019.07.003
    [18] Abraitis P K, Pattrick R A D, Vaughan D J. Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process, 2004, 74(1-4): 41 doi: 10.1016/j.minpro.2003.09.002
    [19] Savage K S, Stefan D, Lehner S W. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products. Appl Geochem, 2008, 23(2): 103 doi: 10.1016/j.apgeochem.2007.10.010
    [20] Tao D P, Richardson P E, Luttrell G H, et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochim Acta, 2003, 48(24): 3615 doi: 10.1016/S0013-4686(03)00482-1
    [21] Wang H, Dowd P A, Xu C S. A reaction rate model for pyrite oxidation considering the influence of water content and temperature. Miner Eng, 2019, 134: 345 doi: 10.1016/j.mineng.2019.02.002
    [22] Li X L, Gao M, Hiroyoshi N, et al. Suppression of pyrite oxidation by ferric-catecholate complexes: An electrochemical study. Miner Eng, 2019, 138: 226 doi: 10.1016/j.mineng.2019.05.005
    [23] Owusu C, Addai-Mensah J, Fornasiero D, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Adv Powder Technol, 2013, 24(4): 801 doi: 10.1016/j.apt.2013.05.006
    [24] Kocabag D, Shergold H L, Kelsall G H. Natural oleophilicity/hydrophobicity of sulphide minerals, II. Pyrite. Int J Miner Process, 1990, 29(3-4): 211 doi: 10.1016/0301-7516(90)90054-3
    [25] Chandra A P, Gerson A R. Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation of the initial steps. Geochim Cosmochim Acta, 2011, 75(20): 6239 doi: 10.1016/j.gca.2011.08.005
    [26] Tu Z H, Wan J J, Guo C L, et al. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochim Acta, 2017, 239: 25 doi: 10.1016/j.electacta.2017.04.049
    [27] Tao D P, Wang Y, Li L. An electrochemical study of surface oxidation and collectorless flotation of pyrite. Int J Electrochem Sci, 2018, 13(6): 5971
    [28] Owusu C, e Abreu S B, Skinner W, et al. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner Eng, 2014, 55: 87 doi: 10.1016/j.mineng.2013.09.018
    [29] Peng Y J, Wang B, Gerson A. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. Int J Miner Process, 2012, 102-103: 141 doi: 10.1016/j.minpro.2011.11.010
    [30] Chandra A P, Puskar L, Simpson D J, et al. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int J Miner Process, 2012, 114-117: 16 doi: 10.1016/j.minpro.2012.08.003
    [31] Liu Y, Dang Z, Wu P X, et al. Influence of ferric iron on the electrochemical behavior of pyrite. Ionics, 2011, 17(2): 169 doi: 10.1007/s11581-010-0492-4
    [32] Huai Y Y, Plackowski C, Peng Y J. The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions. Appl Surf Sci, 2019, 488: 277 doi: 10.1016/j.apsusc.2019.05.236
    [33] Guo B, Peng Y J, Espinosa-Gomez R. Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite. Miner Eng, 2015, 71: 194 doi: 10.1016/j.mineng.2014.11.016
    [34] Guo B, Peng Y J, Espinosa-Gomez R. Cyanide chemistry and its effect on mineral flotation. Miner Eng, 2014, 66-68: 25 doi: 10.1016/j.mineng.2014.06.010
    [35] Mu Y F, Peng Y J, Lauten R A. The depression of pyrite in selective flotation by different reagent systems-A literature review. Miner Eng, 2016, 96-97: 143 doi: 10.1016/j.mineng.2016.06.018
    [36] Janetski N D, Woodburn S I, Woods R. An electrochemical investigation of pyrite flotation and depression. Int J Miner Process, 1977, 4(3): 227 doi: 10.1016/0301-7516(77)90004-7
    [37] Khmeleva T N, Beattie D A, Georgiev T V, et al. Surface study of the effect of sulphite ions on copper-activated pyrite pre-treated with xanthate. Miner Eng, 2003, 16(7): 601 doi: 10.1016/S0892-6875(03)00133-X
    [38] Ahmadi M, Gharabaghi M, Abdollahi H. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system. Adv Powder Technol, 2018, 29(12): 3155 doi: 10.1016/j.apt.2018.08.015
    [39] Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
    [40] Bicak O, Ekmekci Z, Bradshaw D J, et al. Adsorption of guar gum and CMC on pyrite. Miner Eng, 2007, 20(10): 996 doi: 10.1016/j.mineng.2007.03.002
    [41] Mu Y F, Peng Y J, Lauten R A. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Miner Eng, 2016, 92: 37 doi: 10.1016/j.mineng.2016.02.007
    [42] Mu Y F, Peng Y J, Lauten R A. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochim Acta, 2015, 174: 133 doi: 10.1016/j.electacta.2015.05.150
    [43] Bruckard W J, Sparrow G J, Woodcock J T. A review of the effects of the grinding environment on the flotation of copper sulphides. Inter J Miner Process, 2011, 100(1-2): 1 doi: 10.1016/j.minpro.2011.04.001
    [44] Peng Y J, Grano S, Fornasiero D, et al. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int J Miner Process, 2003, 69(1-4): 87 doi: 10.1016/S0301-7516(02)00119-9
    [45] Huang G, Grano S. Galvanic interaction of grinding media with pyrite and its effect on floatation. Miner Eng, 2005, 18(12): 1152 doi: 10.1016/j.mineng.2005.06.005
    [46] Corin K C, Song Z G, Wiese J G, et al. Effect of using different grinding media on the flotation of a base metal sulphide ore. Miner Eng, 2018, 126: 24 doi: 10.1016/j.mineng.2018.06.019
    [47] Mu Y F, Cheng Y P, Peng Y J. The interaction between grinding media and collector in pyrite flotation at neutral and slightly acidic pH. Miner Eng, https://doi.org/10.1016/j.mineng.2019.106063.
    [48] Mu Y F, Cheng Y P, Peng Y J. The interaction of grinding media and collector in pyrite flotation at alkaline pH. Miner Eng, 2010, 152: 106344
    [49] Peng Y J, Grano S. Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides. Electrochim Acta, 2010, 55(19): 5470 doi: 10.1016/j.electacta.2010.04.097
    [50] Cohn C A, Mueller S, Wimmer E, et al. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans, 2006, 7: 3 doi: 10.1186/1467-4866-7-3
    [51] Nooshabadi A J, Larsson A C, Kota H R. Formation of hydrogen peroxide by pyrite and its influence on flotation. Miner Eng, 2013, 49: 128 doi: 10.1016/j.mineng.2013.05.016
  • 加載中
圖(3)
計量
  • 文章訪問數:  2349
  • HTML全文瀏覽量:  769
  • PDF下載量:  80
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-29
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回