[1] |
Liu L, Mavrogenes J, Holden P, et al. Quadruple sulfur isotopic fractionation during pyrite desulfidation to pyrrhotite. Geochim Cosmochim Acta, 2020, 273: 354 doi: 10.1016/j.gca.2020.01.024
|
[2] |
Xian H Y, He H P, Zhu J X, et al. Crystal habit-directed gold deposition on pyrite: Surface chemical interpretation of the pyrite morphology indicative of gold enrichment. Geochim Cosmochim Acta, 2019, 264: 191 doi: 10.1016/j.gca.2019.08.011
|
[3] |
Santander M, Valderrama L. Recovery of pyrite from copper tailings by flotation. J Mater Res Technol, 2019, 8(5): 4312 doi: 10.1016/j.jmrt.2019.07.041
|
[4] |
Mikhlin Y, Tomashevich Y, Vorobyev S, et al. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides. Appl Surf Sci, 2016, 387: 796 doi: 10.1016/j.apsusc.2016.06.190
|
[5] |
Bulut G, Yenial U, Emiroglu E, et al. Arsenic removal from aqueous solution using pyrite. J Clean Prod, 2014, 84: 526 doi: 10.1016/j.jclepro.2013.08.018
|
[6] |
Chernyshova I V. Anodic oxidation of galena (PbS) studied FTIR-spectroelectrochemically. J Phys Chem B, 2001, 105(34): 8178 doi: 10.1021/jp0110253
|
[7] |
Grano S, Ralston J, Smart R S C. Influence of electrochemical environment on the flotation behaviour of Mt. Isa copper and lead-zinc ore. Int J Miner Process, 1990, 30(1-2): 69
|
[8] |
Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
|
[9] |
Nicol M, Zhang S C, Tjandrawan V. The electrochemistry of pyrite in chloride solutions. Hydrometallurgy, 2018, 178: 116 doi: 10.1016/j.hydromet.2018.04.013
|
[10] |
Majuste D, Ciminelli V S T, Osseo-Asare K, et al. Quantitative assessment of the effect of pyrite inclusions on chalcopyrite electrochemistry under oxidizing conditions. Hydrometallurgy, 2012, 113-114: 167 doi: 10.1016/j.hydromet.2011.12.020
|
[11] |
Nicol M J, Miki H, Zhang S C, et al. The effects of sulphate ions and temperature on the leaching of pyrite. 1. Electrochemistry. Hydrometallurgy, 2013, 133: 188 doi: 10.1016/j.hydromet.2013.01.010
|
[12] |
Qi X, Li X, Liang Y N, et al. Surface structure-dependent hydrophobicity/oleophilicity of pyrite and its influence on coal flotation. J Ind Eng Chem, 2020, 87: 136 doi: 10.1016/j.jiec.2020.03.024
|
[13] |
He H P, Xian H Y, Zhu J X, et al. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. Acta Petrol Sin, 2019, 35(1): 129 doi: 10.18654/1000-0569/2019.01.09何宏平, 鮮海洋, 朱建喜, 等. 從礦物粉晶表面反應性到礦物晶面反應性——以黃鐵礦氧化行為的晶面差異性為例. 巖石學報, 2019, 35(1):129 doi: 10.18654/1000-0569/2019.01.09
|
[14] |
Alfonso D R. Computational investigation of FeS2 surfaces and prediction of effects of sulfur environment on stabilities. J Phys Chem C, 2010, 114(19): 8971 doi: 10.1021/jp100578n
|
[15] |
Zhu J X, Xian H Y, Lin X J, et al. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochim Cosmochim Acta, 2018, 228: 259 doi: 10.1016/j.gca.2018.02.050
|
[16] |
Xian Y J, Wen S M, Chen X M, et al. Effect of lattice defects on the electronic structures and floatability of pyrites. Int J Miner Metall Mater, 2012, 19(12): 1069 doi: 10.1007/s12613-012-0672-5
|
[17] |
de Oliveira C M, Müller T G, André R A, et al. Pyrite from coal mining: High-energy milling and analysis of the electrical and optical properties. Mate Lett, 2019, 253: 339 doi: 10.1016/j.matlet.2019.07.003
|
[18] |
Abraitis P K, Pattrick R A D, Vaughan D J. Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process, 2004, 74(1-4): 41 doi: 10.1016/j.minpro.2003.09.002
|
[19] |
Savage K S, Stefan D, Lehner S W. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products. Appl Geochem, 2008, 23(2): 103 doi: 10.1016/j.apgeochem.2007.10.010
|
[20] |
Tao D P, Richardson P E, Luttrell G H, et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochim Acta, 2003, 48(24): 3615 doi: 10.1016/S0013-4686(03)00482-1
|
[21] |
Wang H, Dowd P A, Xu C S. A reaction rate model for pyrite oxidation considering the influence of water content and temperature. Miner Eng, 2019, 134: 345 doi: 10.1016/j.mineng.2019.02.002
|
[22] |
Li X L, Gao M, Hiroyoshi N, et al. Suppression of pyrite oxidation by ferric-catecholate complexes: An electrochemical study. Miner Eng, 2019, 138: 226 doi: 10.1016/j.mineng.2019.05.005
|
[23] |
Owusu C, Addai-Mensah J, Fornasiero D, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Adv Powder Technol, 2013, 24(4): 801 doi: 10.1016/j.apt.2013.05.006
|
[24] |
Kocabag D, Shergold H L, Kelsall G H. Natural oleophilicity/hydrophobicity of sulphide minerals, II. Pyrite. Int J Miner Process, 1990, 29(3-4): 211 doi: 10.1016/0301-7516(90)90054-3
|
[25] |
Chandra A P, Gerson A R. Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation of the initial steps. Geochim Cosmochim Acta, 2011, 75(20): 6239 doi: 10.1016/j.gca.2011.08.005
|
[26] |
Tu Z H, Wan J J, Guo C L, et al. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochim Acta, 2017, 239: 25 doi: 10.1016/j.electacta.2017.04.049
|
[27] |
Tao D P, Wang Y, Li L. An electrochemical study of surface oxidation and collectorless flotation of pyrite. Int J Electrochem Sci, 2018, 13(6): 5971
|
[28] |
Owusu C, e Abreu S B, Skinner W, et al. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner Eng, 2014, 55: 87 doi: 10.1016/j.mineng.2013.09.018
|
[29] |
Peng Y J, Wang B, Gerson A. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. Int J Miner Process, 2012, 102-103: 141 doi: 10.1016/j.minpro.2011.11.010
|
[30] |
Chandra A P, Puskar L, Simpson D J, et al. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int J Miner Process, 2012, 114-117: 16 doi: 10.1016/j.minpro.2012.08.003
|
[31] |
Liu Y, Dang Z, Wu P X, et al. Influence of ferric iron on the electrochemical behavior of pyrite. Ionics, 2011, 17(2): 169 doi: 10.1007/s11581-010-0492-4
|
[32] |
Huai Y Y, Plackowski C, Peng Y J. The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions. Appl Surf Sci, 2019, 488: 277 doi: 10.1016/j.apsusc.2019.05.236
|
[33] |
Guo B, Peng Y J, Espinosa-Gomez R. Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite. Miner Eng, 2015, 71: 194 doi: 10.1016/j.mineng.2014.11.016
|
[34] |
Guo B, Peng Y J, Espinosa-Gomez R. Cyanide chemistry and its effect on mineral flotation. Miner Eng, 2014, 66-68: 25 doi: 10.1016/j.mineng.2014.06.010
|
[35] |
Mu Y F, Peng Y J, Lauten R A. The depression of pyrite in selective flotation by different reagent systems-A literature review. Miner Eng, 2016, 96-97: 143 doi: 10.1016/j.mineng.2016.06.018
|
[36] |
Janetski N D, Woodburn S I, Woods R. An electrochemical investigation of pyrite flotation and depression. Int J Miner Process, 1977, 4(3): 227 doi: 10.1016/0301-7516(77)90004-7
|
[37] |
Khmeleva T N, Beattie D A, Georgiev T V, et al. Surface study of the effect of sulphite ions on copper-activated pyrite pre-treated with xanthate. Miner Eng, 2003, 16(7): 601 doi: 10.1016/S0892-6875(03)00133-X
|
[38] |
Ahmadi M, Gharabaghi M, Abdollahi H. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system. Adv Powder Technol, 2018, 29(12): 3155 doi: 10.1016/j.apt.2018.08.015
|
[39] |
Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
|
[40] |
Bicak O, Ekmekci Z, Bradshaw D J, et al. Adsorption of guar gum and CMC on pyrite. Miner Eng, 2007, 20(10): 996 doi: 10.1016/j.mineng.2007.03.002
|
[41] |
Mu Y F, Peng Y J, Lauten R A. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Miner Eng, 2016, 92: 37 doi: 10.1016/j.mineng.2016.02.007
|
[42] |
Mu Y F, Peng Y J, Lauten R A. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochim Acta, 2015, 174: 133 doi: 10.1016/j.electacta.2015.05.150
|
[43] |
Bruckard W J, Sparrow G J, Woodcock J T. A review of the effects of the grinding environment on the flotation of copper sulphides. Inter J Miner Process, 2011, 100(1-2): 1 doi: 10.1016/j.minpro.2011.04.001
|
[44] |
Peng Y J, Grano S, Fornasiero D, et al. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int J Miner Process, 2003, 69(1-4): 87 doi: 10.1016/S0301-7516(02)00119-9
|
[45] |
Huang G, Grano S. Galvanic interaction of grinding media with pyrite and its effect on floatation. Miner Eng, 2005, 18(12): 1152 doi: 10.1016/j.mineng.2005.06.005
|
[46] |
Corin K C, Song Z G, Wiese J G, et al. Effect of using different grinding media on the flotation of a base metal sulphide ore. Miner Eng, 2018, 126: 24 doi: 10.1016/j.mineng.2018.06.019
|
[47] |
Mu Y F, Cheng Y P, Peng Y J. The interaction between grinding media and collector in pyrite flotation at neutral and slightly acidic pH. Miner Eng, https://doi.org/10.1016/j.mineng.2019.106063.
|
[48] |
Mu Y F, Cheng Y P, Peng Y J. The interaction of grinding media and collector in pyrite flotation at alkaline pH. Miner Eng, 2010, 152: 106344
|
[49] |
Peng Y J, Grano S. Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides. Electrochim Acta, 2010, 55(19): 5470 doi: 10.1016/j.electacta.2010.04.097
|
[50] |
Cohn C A, Mueller S, Wimmer E, et al. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans, 2006, 7: 3 doi: 10.1186/1467-4866-7-3
|
[51] |
Nooshabadi A J, Larsson A C, Kota H R. Formation of hydrogen peroxide by pyrite and its influence on flotation. Miner Eng, 2013, 49: 128 doi: 10.1016/j.mineng.2013.05.016
|