<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

圖像分割評估方法在顯微圖像分析中的應用

馬博淵 姜淑芳 尹豆 申昊鍇 班曉娟 黃海友 王浩 薛維華 封華

馬博淵, 姜淑芳, 尹豆, 申昊鍇, 班曉娟, 黃海友, 王浩, 薛維華, 封華. 圖像分割評估方法在顯微圖像分析中的應用[J]. 工程科學學報, 2021, 43(1): 137-149. doi: 10.13374/j.issn2095-9389.2020.05.28.002
引用本文: 馬博淵, 姜淑芳, 尹豆, 申昊鍇, 班曉娟, 黃海友, 王浩, 薛維華, 封華. 圖像分割評估方法在顯微圖像分析中的應用[J]. 工程科學學報, 2021, 43(1): 137-149. doi: 10.13374/j.issn2095-9389.2020.05.28.002
MA Bo-yuan, JIANG Shu-fang, YIN Dou, SHEN Hao-kai, BAN Xiao-juan, HUANG Hai-you, WANG Hao, XUE Wei-hua, FENG Hua. Image segmentation metric and its application in the analysis of microscopic image[J]. Chinese Journal of Engineering, 2021, 43(1): 137-149. doi: 10.13374/j.issn2095-9389.2020.05.28.002
Citation: MA Bo-yuan, JIANG Shu-fang, YIN Dou, SHEN Hao-kai, BAN Xiao-juan, HUANG Hai-you, WANG Hao, XUE Wei-hua, FENG Hua. Image segmentation metric and its application in the analysis of microscopic image[J]. Chinese Journal of Engineering, 2021, 43(1): 137-149. doi: 10.13374/j.issn2095-9389.2020.05.28.002

圖像分割評估方法在顯微圖像分析中的應用

doi: 10.13374/j.issn2095-9389.2020.05.28.002
基金項目: 海南省財政科技計劃資助項目(ZDYF2019009);北京科技大學順德研究生院科技創新專項資金資助項目(BK19BE030)
詳細信息
    通訊作者:

    E-mail:huanghy@mater.ustb.edu.cn

  • 中圖分類號: TP3

Image segmentation metric and its application in the analysis of microscopic image

More Information
  • 摘要: 圖像分割是計算機視覺領域中的重要分支,旨在將圖像分成若干個特定的、具有獨特性質的區域。隨著計算機硬件計算能力的提高和計算方法的進步,大量基于不同理論的圖像分割算法獲得了長足的發展。因而選擇合適的評估方法對分割結果的準確性和適用性進行綜合評估,從而選擇最優分割算法,成為圖像分割研究中的必要環節。在綜述14種圖像分割評估指標的基礎上,將其分成基于像素的評估方法、基于類內重合度的評估方法、基于邊界的評估方法、基于聚類的評估方法和基于實例的評估方法五大類。在材料顯微圖像分析的應用背景下,通過實驗討論了不同分割方法和不同典型噪聲在不同評估方法中的表現。最終,討論了各種評估方法的優勢和適用性。

     

  • 圖  1  材料顯微圖像分割流程示意

    Figure  1.  Flow chart of material microscopic image segmentation

    圖  2  評估指標示意圖。(a)IoU指標示意圖;(b)VI指標示意圖

    Figure  2.  Schematics of evaluation metrics: (a) IoU metric diagram; (b) VI metric diagram

    Note: VI(P,T) means variation of information; I(T,P) denotes mutual information; H(P/T) and H(T/P) denote conditional entropy.

    圖  3  邊緣檢測匹配示意圖。(a)令預測邊界與真值邊界進行匹配;(b)令真值邊界與預測邊界進行匹配

    Figure  3.  Matching schematics of edge detection:(a) matching ground truth with prediction skeleton; (b) matching prediction with ground truth skeleton

    圖  4  多晶純鐵晶粒組織及鋁鑭合金枝晶組織圖像在不同分割算法結果的可視化對比

    Figure  4.  Visualization results of different segmentation methods for polycrystalline iron and Al–La alloy microscopic image

    圖  5  兩種圖像數據引入不同種類噪聲的結果。(a)多晶純鐵晶粒圖像;(b)圖(a)的真值結果;(c)在(b)中隨機引入500像素的噪聲點;(d)在(b)中引入500像素的劃痕噪聲;(e)在(b)中引入500像素的消失晶界噪聲;(f)鋁鑭合金枝晶圖像;(g)圖(f)的真值結果;(h)在(g)中隨機引入500像素的噪聲點;(i)在(g)中引入500像素的劃痕噪聲

    Figure  5.  Two microscopic images with different noises: (a) polycrystalline iron; (b) ground truth of (a); (c) random noises with 500 pixels in (b); (d) scratch noises with 500 pixels in (b); (e) missing boundaries with 500 pixels in (b); (f) Al la alloy; (g) ground truth of (f); (h) random noises with 500 pixels in (g); (i) scratch noises with 500 pixels in (g)

    表  1  基于聚類任務的列聯表

    Table  1.   Contingency table

    Union${P_1}$${P_2}$${P_s}$Sums
    ${T_1}$${n_{11}}$${n_{12}}$${n_{1s}}$${a_1}$
    ${T_2}$${n_{21}}$${n_{22}}$${n_{2s}}$${a_2}$
    ${T_r}$${n_{r1}}$${n_{r2}}$${n_{rs}}$${a_r}$
    Sums${b_1}$${b_2}$${b_s}$
    下載: 導出CSV

    表  2  各指標的簡要概括

    Table  2.   Brief description of different evaluation methods

    PropertiesPixel based evaluation methods Intra class coincidence based
    evaluation methods
    Edge based evaluation methods
    Pixel accuracyMean accuracyMIoUFWIoUDice scoreFigure of meritCompletenessCorrectness
    Value range[0, 1][0, 1] [0, 1][0, 1][0, 1] [0, 1][0, 1][0, 1]
    tendency$ \uparrow $$ \uparrow $ $ \uparrow $$ \uparrow $$ \uparrow $ $ \uparrow $$ \uparrow $$ \uparrow $
    下載: 導出CSV

    表  3  材料顯微圖像數據集參數

    Table  3.   Description of two material micrographic image datasets

    IDMicrostructureImage sizeImage number
    1Polycrystalline iron1024×1024296
    2Al–La alloy1024×102450
    下載: 導出CSV

    表  4  多晶純鐵晶粒組織圖像不同分割算法下評估結果

    Table  4.   Evaluation results under different segmentation algorithms for polycrystalline iron image

    Segmentation algorithmPixel based evaluation methodsIntra class coincidence based
    evaluation methods
    Edge based evaluation methods
    Pixel accuracyMean accuracyMIoUFWIoUDice scoreFigure of meritCompletenessCorrectness
    OTSU0.94430.78000.72260.89790.96960.65930.82980.9146
    Canny0.91450.63640.58110.84680.95400.40850.70070.9156
    Watershed0.90170.56130.51090.82360.94760.20090.45160.6537
    K?means0.57390.54690.43310.53070.57710.49060.85980.5796
    Random walker0.94470.79250.72930.89940.96970.69630.84450.9059
    Unet0.93110.94230.75100.88980.96050.89330.97840.8562
    下載: 導出CSV

    表  5  鋁鑭合金枝晶組織圖像不同分割算法下評估結果

    Table  5.   Evaluation of different segmentation results for Al–La microscopic image

    Segmentation algorithmPixel based evaluation methodsIntra class coincidence based evaluation methodsClustering based evaluation methods
    Pixel accuracyMean accuracyMIoUFWIoUDice scoreRI
    OTSU0.62630.70250.45380.44410.65730.6981
    Canny0.52590.61260.34970.33150.58900.4780
    Watershed0.41990.54260.23730.19740.55570.5902
    K-means0.50780.50980.32870.34820.34340.5210
    Random walker0.51100.40270.25590.32490.00240.3552
    Unet0.98500.98540.96840.97060.97960.9810
    下載: 導出CSV

    表  6  多晶純鐵晶粒圖像在不同噪聲下各評估方法的結果

    Table  6.   Results of different evaluation methods for polycrystalline iron image under different noises

    Noise typePixel based evaluation methodsIntra class coincidence based
    evaluation methods
    Edge based evaluation methods
    Pixel accuracyMean accuracyMIoUFWIoUDice scoreFigure of meritCompletenessCorrectness
    Random noises0.9980
    (?0.0020)
    0.9989
    (?0.0011)
    0.9833
    (?0.0167)
    0.9961
    (?0.0039)
    0.9989
    (?0.0011)
    0.9790
    (?0.0011)
    1.0000
    (?0.0000)
    0.9737
    (?0.0263)
    Scratch noises0.9980
    (?0.0020)
    0.9989
    (?0.0011)
    0.9833
    (?0.0167)
    0.9961
    (?0.0039)
    0.9989
    (?0.0011)
    0.9739
    (?0.0261)
    1.0000
    (?0.0000)
    0.9702
    (?0.0298)
    Missing boundaries0.9964
    (?0.0036)
    0.9713
    (?0.0287)
    0.9694
    (?0.0306)
    0.9929
    (?0.0071)
    0.9981
    (?0.0019)
    0.9426
    (?0.0574)
    0.9465
    (?0.0535)
    1.0000
    (?0.0298)
    下載: 導出CSV

    表  7  鋁鑭合金枝晶圖像在不同噪聲下各評估方法的結果

    Table  7.   Results of different evaluation methods for Al La alloy under different noises

    Noise typePixel based evaluation methodsIntra class coincidence based evaluation methodsClustering based evaluation methods
    Pixel accuracyMean accuracyMIoUFWIoUDice scoreRI
    Random noises0.9980(?0.0020)0.9974(?0.0026)0.9958(?0.0042)0.9960(?0.0040)0.9974(?-0.0026)0.9974(?0.0026)
    Scratch noises0.9980(?0.0020)0.9974(?0.0026)0.9958(?0.0042)0.9960(?0.0040)0.9974(?0.0026)0.9966(?0.0034)
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Szeliski R. Computer Vision: Algorithms and Applications. Springer Science & Business Media, 2011
    [2] Zhang Y Z. Image Engineering. 4th Ed. Beijing: Tsinghua University Press, 2018

    章毓晉. 圖像工程. 4版. 北京: 清華大學出版社, 2018
    [3] Xu R. An overview of image segmentation technique and performance evaluation. J Ningbo Univ Technol, 2011, 23(3): 76 doi: 10.3969/j.issn.1008-7109.2011.03.019

    徐瑞. 圖像分割方法及性能評價綜述. 寧波工程學院學報, 2011, 23(3):76 doi: 10.3969/j.issn.1008-7109.2011.03.019
    [4] Gonzalez R C, Woods R E. Digital Image Processing. 3rd Ed. Upper Saddle River: Prentice Hall Press, 2008
    [5] Wang J, Xu X L, Liang K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change material for thermal energy storage applications: a review. Chin J Eng, 2020, 42(1): 26

    王靜靜, 徐小亮, 梁凱彥, 等. 多孔基定形復合相變材料傳熱性能提升研究進展. 工程科學學報, 2020, 42(1):26
    [6] Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362

    叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
    [7] Song X Y. Progress on the multi-disciplinary relationship of stereology, image analysis and computational materials science. Chin J Stereol Image Anal, 2008, 13(4): 280 doi: 10.3969/j.issn.1007-1482.2008.04.013

    宋曉艷. 體視學, 圖像分析與計算材料學之間的關系及進展. 中國體視學與圖像分析, 2008, 13(4):280 doi: 10.3969/j.issn.1007-1482.2008.04.013
    [8] Rajan K. Materials informatics: The materials “gene” and big data. Ann Rev Mater Res, 2015, 45: 153
    [9] Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547
    [10] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436
    [11] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 1979, 9(1): 62
    [12] Lakshmi S, Sankaranarayanan D V. A study of edge detection techniques for segmentation computing approaches. Int J Comput Appl, 2010, 1(1): 35
    [13] Roerdink J B T M, Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform, 2000, 41(1-2): 187
    [14] Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell, 1994, 16(6): 641
    [15] Jain A K. Data clustering: 50 years beyond K-means. Pattern Recognit Lett, 2010, 31(8): 651
    [16] Ma B Y, Ban X J, Su Y, et al. Fast-FineCut: Grain boundary detection in microscopic images considering 3D information. Micron, 2019, 116: 5
    [17] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 3431
    [18] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation // International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234
    [19] Li W, Field K G, Morgan D. Automated defect analysis in electron microscopic images. npj Comput Mater, 2018, 4: 36
    [20] Azimi S M, Britz D, Engstler M, et al. Advanced steel microstructural classification by deep learning methods. Sci Rep, 2018, 8: 2128
    [21] Ma B Y, Ban X J, Huang H Y, et al. Deep learning-based image segmentation for Al?La alloy microscopic images. Symmetry, 2018, 10(4): 107
    [22] Powers D M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol, 2011, 2(1): 37
    [23] Dice L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26(3): 297
    [24] Abdou I E, Pratt W K. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE, 1979, 67(5): 753
    [25] Mosinska A, Marquez-Neila P, Koziński M, et al. Beyond the pixel-wise loss for topology-aware delineation // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 3136
    [26] Yeung K Y, Ruzzo W L. Details of the adjusted rand index and clustering algorithms, supplement to the paper an empirical study on principal component analysis for clustering gene expression data. Bioinformatics, 2001, 17(9): 763
    [27] Rand W M. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc, 1971, 66(336): 846
    [28] Hubert L, Arabie P. Comparing partitions. J Classific, 1985, 2(1): 193
    [29] Meil? M. Comparing clusterings — an information based distance. J Multivar Anal, 2007, 98(5): 873
    [30] Nunez-Iglesias J, Kennedy R, Parag T, et al. Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE, 2013, 8(8): e71715
    [31] Booz Allen Hamilton. Data Science Bowl[J/OL]. Kaggle (2018-05-21)[2020-12-02]. https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
    [32] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context// European Conference on Computer Vision. Zurich, 2014: 740
    [33] Waggoner J, Zhou Y J, Simmons J, et al. 3D materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism. IEEE Trans Image Process, 2013, 22(12): 5282
    [34] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8(6): 679
    [35] Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell, 1991, 13(6): 583
    [36] Hartigan J, Wong M. Algorithm AS 136: A K?means clustering algorithm. Appl Stat, 1979, 28(1): 100
    [37] Grady L. Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell, 2006, 28(11): 1768
    [38] Xue W H. Three?Dimensional Modeling and Quantitative Characterization of Grain Structure[Dissertation]. Beijing: University of Science & Technology Beijing, 2017

    薛維華. 晶粒組織的三維模型構建與定量表征研究[學位論文]. 北京: 北京科技大學, 2017
  • 加載中
圖(5) / 表(7)
計量
  • 文章訪問數:  2281
  • HTML全文瀏覽量:  1119
  • PDF下載量:  145
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-28
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回